-
Notifications
You must be signed in to change notification settings - Fork 2
/
train_ucas.py
194 lines (140 loc) · 7.04 KB
/
train_ucas.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
from __future__ import print_function
from __future__ import division
from __future__ import absolute_import
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import numpy as np
import cv2
import random
import os
import yaml
import collections
import argparse
import sys
sys.path.append('DOTA_devkit')
from tqdm import tqdm
import torch.distributed as dist
import torch.utils.data.distributed
import torch.multiprocessing as mp
from nets.resnet_dcn_DFPN_model import ResNet
from datasets.UCAS_AODDataset import UCAS_AODSetv1,collater
parser = argparse.ArgumentParser()
parser.add_argument("--input_size", default = 640 , type=int)
parser.add_argument("--datadir", type=str, default='../DOTA/datasets/UCAS_AOD/train')
parser.add_argument("--heads", default={'hm': 2,'wh': 2 ,'reg': 2, 'theta':180})
parser.add_argument("--model", type=int, default=50)
parser.add_argument("--num_workers", type=int, default=16)
parser.add_argument('--seed', default=2021, type=int,help='random seed')
parser.add_argument("--epochs", type=int, default=140)
parser.add_argument("--start_epoch", type=int, default=0)
parser.add_argument("--batch_size", type=int, default = 32, help="size of each image batch")
parser.add_argument("--lr", type=float, default=1e-4)
parser.add_argument("--lr_decay", default=[100,130])
parser.add_argument('--resume', '-r', action='store_true',help='resume from checkpoint')
parser.add_argument('--resume_weight_path', default="")
parser.add_argument("--save_interval", type=int, default=10)
parser.add_argument('--log_path', default="./result/debug.txt")
parser.add_argument('--dist-url', default='tcp://127.0.0.1:2556', type=str,
help='url used to set up distributed training')
parser.add_argument('--dist-backend', default='nccl', type=str,
help='distributed backend')
parser.add_argument('--nodes', default=1, type=int,
help='total number of nodes for distributed training')
parser.add_argument('--rank', default=0, type=int,
help='node rank for distributed training')
parser.add_argument('--gpu', default=None, type=int,
help='GPU id to use.')
parser.add_argument('--world-size', default=-1, type=int,
help='total number of process for distributed training')
parser.add_argument('--local_rank', default=0, type=int)
def cal(epoch):
if epoch < 10:
return 0.0
else:
return 1.0
def main():
args = parser.parse_args()
print(args)
"""随机数种子"""
random.seed(args.seed)
#np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
cudnn.deterministic = True
ngpus_per_node = torch.cuda.device_count()
args.world_size = ngpus_per_node * args.nodes
mp.spawn(main_worker, nprocs=ngpus_per_node, args=(ngpus_per_node, args))
def main_worker(gpu, ngpus_per_node, args):
#torch.multiprocessing.set_sharing_strategy('file_system')
random.seed(args.seed)
np.random.seed(args.seed+gpu)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
cudnn.deterministic = True
args.gpu = gpu
print("Use GPU: {} for training".format(args.gpu))
args.rank = args.rank * ngpus_per_node + gpu
dist.init_process_group(backend=args.dist_backend, init_method=args.dist_url,
world_size=args.world_size, rank=args.rank)
torch.cuda.set_device(args.gpu)
train_loss = collections.deque(maxlen=10)
print("=> creating model.")
print(args.heads)
model = ResNet(num_layers=args.model,heads=args.heads).cuda(args.gpu)
optimizer = optim.Adam(model.parameters(), lr=args.lr)
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).cuda(args.gpu)
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu],find_unused_parameters=True)
if args.resume:
model.load_state_dict(torch.load(args.resume_weight_path,map_location={"cuda:0":"cuda:{}".format(args.gpu)}))
print("==>finished loading weight")
cudnn.benchmark = True
print("=> preparing data")
args.batch_size = int(args.batch_size / ngpus_per_node)
args.num_workers = int((args.num_workers + ngpus_per_node - 1) / ngpus_per_node)
trainset = UCAS_AODSetv1(root_dir=args.datadir,img_size=args.input_size)
print("training images: {}".format(len(trainset)))
train_sampler = torch.utils.data.distributed.DistributedSampler(trainset)
train_loader = torch.utils.data.DataLoader(trainset, batch_size=args.batch_size, shuffle=(train_sampler is None),collate_fn=collater,num_workers=args.num_workers, pin_memory=True, sampler=train_sampler)
if args.rank == 0 : f = open(args.log_path, 'w')
for epoch in range(args.start_epoch,args.epochs) :
model.train()
train_sampler.set_epoch(epoch)
for batch_idx, data in enumerate(train_loader):
img,label,heatmap_t,smoothlabel=data['img'].cuda(args.gpu, non_blocking=True),data['label'],data['heatmap_t'].cuda(args.gpu, non_blocking=True),data['smooth_label']
if 1:
center_loss, scale_loss, offset_loss, theta_loss = model({'img':img , 'label':label , 'heatmap_t':heatmap_t,'smooth_label':smoothlabel})
total_loss = cal(epoch) * (center_loss + scale_loss + offset_loss) + 1.0*theta_loss
optimizer.zero_grad()
total_loss.backward()
for p in model.parameters():
torch.nn.utils.clip_grad_norm_(p,10)
optimizer.step()
train_loss.append(float(total_loss))
if args.rank==0:
print(
'{}\{} | Center loss: {:1.5f} | scale loss: {:1.5f} | offset loss: {:1.5f}| theta loss:{:1.5f} | running loss: {:1.5f}'.format(
epoch, batch_idx, float(center_loss), float(scale_loss), float(offset_loss),float(theta_loss), np.mean(train_loss))
)
f.write(str(float(center_loss))) , f.write(" ") , f.write(str(float(scale_loss))) , f.write(" ") , f.write(str(float(offset_loss))), f.write(" ") ,f.write(str(float(theta_loss))), f.write(" "), f.write(str(float(np.mean(train_loss))))
f.write('\n')
if (epoch+1) in args.lr_decay :
args.lr = args.lr/10
for param_group in optimizer.param_groups:
param_group['lr'] = args.lr
if args.rank == 0 and (epoch + 1) % args.save_interval == 0:
if not os.path.isdir('checkpoint'):
os.mkdir('checkpoint')
if not os.path.isdir('checkpoint/ucas_aod'):
os.mkdir('checkpoint/ucas_aod')
print("Saving...")
torch.save(model.state_dict(), f"checkpoint/ucas_aod/ckpt_%d.pth" % (epoch+1))
if args.rank == 0 : f.close()
if __name__ == "__main__":
main()