-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathICAcomputing_RMT.R
118 lines (108 loc) · 4.24 KB
/
ICAcomputing_RMT.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
ICAcomputing <- function(obj, center=TRUE,scale=FALSE,RMT=TRUE, nc.vec=NULL, nc.global.mode=NULL,global.mode=FALSE,ICA.type="JADE", nbIt=10, funClus="hclust",two.stage=TRUE,two.stage.ICA="JADE",RMT.default=TRUE,svd.max=NULL){
#obj: the single cell gene expression datasets
#seurat.obj: if the "obj" is a Seurat object
#batch: if obj is a matrix object, then the a batch indicate vector need to be defined
#center: if your gene expression matrix need to be centered
#scale: ..... scaled
#RMT: random matrix theory estimates
#ICA.type: ICA type can be choosed as FastICA, MineICA or JADE algorithm
ica.pooling <- NULL
ind <- 1
ica.m.pooling <- NULL
RMT.num <- NULL
if(global.mode){
print("Running scaling on each batch")
M <- NULL
for(i in names(table(obj$batch))){
data <- as.matrix(GetAssayData(obj))[,obj$batch==i]
print(paste('Centering on ',i,sep=""))
M <- cbind(M,t(apply(data,1,scale,scale=FALSE)))
}
print("Running ICA...")
if(ICA.type=="FastICA"){
X.ICA <-fastICA(M,n.comp=nc.global.mode)
sc_data <- as.matrix(X.ICA$S)
sc_data_M <- as.matrix(X.ICA$A)
}
if(ICA.type=="JADE"){
res <- icajade(M, nc=nc.global.mode)
sc_data <- as.matrix(res$S)
sc_data_M <- as.matrix(res$M)
}
ica.pooling <- sc_data
ica.m.pooling <- sc_data_M
}else{
for(i in names(table(obj$batch))){
print(paste("batch ",ind," Indepdent Component Analysis",sep=""))
data <- obj[,obj$batch==i]
if(ncol(data)>30){
if(center){
print("emmm...centering...")
M <- ScaleData(data,do.scale=FALSE,features=rownames(data))
eval(parse(text = paste("M <- M@assays$",DefaultAssay(M),"@scale.data",sep="")))
print("Done Centering")
}
if(scale){
print("emmm...scaling...")
M <- ScaleData(data,do.scale=TRUE,features=rownames(data))
eval(parse(text = paste("M <- M@assays$",DefaultAssay(M),"@scale.data",sep="")))
print("Done scaling")
}
if(RMT){
print('Using RMT to estimate number of module')
if(center) num <- EstNumModule(as.matrix(GetAssayData(data)),default=RMT.default,svd.num=svd.max)
if(scale) num <- EstNumModule(M,default=RMT.default,svd.num=svd.max)
if(num == 0) num <- num+1;
print(paste('RMT estimate',num,'expression programm',sep=" "))
if(two.stage){
print("Running 2th-step of RMT...(Recommend for integrating different platform)")
if(two.stage.ICA=="FastICA"){
res <- fastICA(M, num);
mixture <- as.matrix(res$A)
num <- EstDimRMT(mixture)
num <- num$dim}
if(two.stage.ICA=="JADE"){
res <- icajade(M, num);
mixture <- as.matrix(res$M)
num <- EstDimRMT(mixture)
num <- num$dim}
print(paste('Two step RMT estimate',num,'expression programm',sep=" "))
}
}else{
num <- nc.vec[ind]
}
if(ICA.type=="MineICA"){
res <- clusterFastICARuns(X=M, nbComp=num, nbIt=nbIt, funClus=funClus, method="average")
}
if(ICA.type=="FastICA"){
X.ICA <-fastICA(M,n.comp=num)
sc_data <- as.matrix(X.ICA$S)
}
if(ICA.type=="JADE"){
if(num==1){res <- icajade(M, nc=num+1);
sc_data <- as.matrix(res$S[,1])
}else{
res <- icajade(M, nc=num);
sc_data <- as.matrix(res$S)
}
}
}else{
print('Warning! the number of cells is too low')
}
# name for result ica.pooling matrix
id <- NULL;
for(j in 1:num){ id <- c(id, paste(i,"-",j,sep=""))}
colnames(sc_data) <- id
ica.pooling <- cbind(ica.pooling, sc_data)
paste("Done ",ind,"th batch",sep="")
ind <- ind+1;
RMT.num <- c(RMT.num,ncol(sc_data))
}
}
# return
res <- list()
res$ica.pooling <- ica.pooling
res$ica.pooling.m <- ica.m.pooling
res$RMT.num <- RMT.num
res
}