Here is a simple example to get started with PanopticHead and aloception. To learn more about PanopticHead, you can checkout the Detr Tutorials or the scripts described bellow.
# Load model : Panoptic Head needs to load a module based on DETR architecture
detr_model = alonet.detr.DetrR50(num_classes=250)
model = alonet.detr_panoptic.PanopticHead(DETR_module=detr_model, weights="detr-r50-panoptic").eval()
# Or simply, you can use the predefined model
model = alonet.detr_panoptic.DetrR50Panoptic(weights="detr-r50-panoptic").eval()
# Open and normalized frame
frame = aloscene.Frame("/path/to/image.jpg").norm_resnet()
# Run inference
pred_boxes, pred_masks = model.inference(model([frame]))
# Add and display the boxes/masks predicted
frame.append_boxes2d(pred_boxes[0], "pred_boxes")
frame.append_segmentation(pred_masks[0], "pred_masks")
frame.get_view().render()
python alonet/detr_panoptic/detr_r50_panoptic.py /path/to/image.jpg
python alonet/detr_panoptic/train_on_coco.py
python alonet/detr_panoptic/eval_on_coco.py --weights detr-r50-panoptic [--ap_limit n]
| all | .50 | .55 | .60 | .65 | .70 | .75 | .80 | .85 | .90 | .95 |
-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+
box | 33.85 | 49.88 | 47.83 | 45.33 | 42.58 | 39.36 | 35.12 | 30.25 | 24.41 | 16.71 | 7.03 |
mask | 24.64 | 41.50 | 39.13 | 36.44 | 33.24 | 29.44 | 24.91 | 19.85 | 13.70 | 6.77 | 1.38 |
precision | 31.75 | 43.25 | 41.90 | 40.31 | 38.43 | 36.21 | 33.20 | 29.70 | 25.30 | 19.04 | 10.14 |
recall | 44.18 | 60.96 | 58.92 | 56.52 | 53.70 | 50.39 | 46.07 | 41.02 | 34.66 | 25.85 | 13.69 |
box_ct | 56728.0 | 56728.0 | 56728.0 | 56728.0 | 56728.0 | 56728.0 | 56728.0 | 56728.0 | 56728.0 | 56728.0 | 56728.0 |
-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+
-------+-------+-------+-------+-------+-------+
| PQst | SQst | RQst |
-------+-------+-------+-------+-------+-------+
-------+-------+-------+-------+-------+-------+
total = 53 | 0.357 | 0.779 | 0.449 |
-------+-------+-------+-------+-------+-------+
-------+-------+-------+-------+-------+-------+
| PQth | SQth | RQth |
-------+-------+-------+-------+-------+-------+
-------+-------+-------+-------+-------+-------+
total = 80 | 0.480 | 0.795 | 0.595 |
-------+-------+-------+-------+-------+-------+
-------+-------+-------+-------+-------+-------+
| PQ | SQ | RQ |
-------+-------+-------+-------+-------+-------+
-------+-------+-------+-------+-------+-------+
total = 133 | 0.431 | 0.789 | 0.537 |
-------+-------+-------+-------+-------+-------+