-
Notifications
You must be signed in to change notification settings - Fork 1
/
main.py
146 lines (116 loc) · 5.06 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import os
import sys
import numpy as np
import gym
from gym import spaces
from transformers import pipeline
import jax
import jax.numpy as jnp
from collections import deque
import random
# Add the project root directory to the Python path
project_root = os.path.dirname(os.path.abspath(__file__))
sys.path.append(project_root)
# Import project modules (to be implemented)
from modules.data_collection import DataCollector
from modules.image_recognition import ImageRecognizer
from modules.model_training import ModelTrainerWrapper
from modules.object_detection import ObjectDetector
from modules.threat_assessment import ThreatAssessor
from modules.response_generation import ResponseGenerator
# Define constants for the environment
N_ACTIONS = 4 # Example: move left, right, up, down
HEIGHT, WIDTH, CHANNELS = 84, 84, 3 # Example image dimensions
# Define hyperparameters
BATCH_SIZE = 32
REPLAY_BUFFER_SIZE = 10000
GAMMA = 0.99
EPSILON_START = 1.0
EPSILON_END = 0.01
EPSILON_DECAY = 0.995
TARGET_UPDATE_FREQUENCY = 100
class BacterialThreatEnv(gym.Env):
def __init__(self, components):
super(BacterialThreatEnv, self).__init__()
self.action_space = spaces.Discrete(N_ACTIONS)
self.observation_space = spaces.Box(low=0, high=255, shape=(HEIGHT, WIDTH, CHANNELS), dtype=np.uint8)
self.components = components
def step(self, action):
# Execute one time step within the environment
# This is a placeholder implementation
observation = self.components['data_collector'].collect_data()
processed_image = self.components['image_recognizer'].process_image(observation)
detected_objects = self.components['object_detector'].detect_objects(processed_image)
threat_level = self.components['threat_assessor'].assess_threat(detected_objects)
response = self.components['response_generator'].generate_response(threat_level)
reward = self._calculate_reward(threat_level, response)
done = threat_level == 0 # Example: episode ends when no threat is detected
return observation, reward, done, {}
def reset(self):
# Reset the state of the environment to an initial state
return self.components['data_collector'].collect_data()
def render(self, mode='human', close=False):
# Render the environment to the screen (not implemented for this example)
pass
def _calculate_reward(self, threat_level, response):
# Placeholder reward function
return -threat_level + (10 if response == 'correct_response' else 0)
def dqn_learning(env, num_episodes):
input_shape = env.observation_space.shape
n_actions = env.action_space.n
model = ModelTrainerWrapper(input_shape=input_shape, n_actions=n_actions)
replay_buffer = deque(maxlen=REPLAY_BUFFER_SIZE)
epsilon = EPSILON_START
for episode in range(num_episodes):
state = env.reset()
done = False
total_reward = 0
while not done:
if np.random.random() > epsilon:
state = jnp.array(state, dtype=jnp.float32)
q_values = model.predict(state)
action = int(q_values[0])
else:
action = env.action_space.sample()
next_state, reward, done, _ = env.step(action)
replay_buffer.append((state, action, reward, next_state, done))
state = next_state
total_reward += reward
if len(replay_buffer) > BATCH_SIZE:
batch = random.sample(replay_buffer, BATCH_SIZE)
loss = model.update(*zip(*batch))
if episode % TARGET_UPDATE_FREQUENCY == 0:
model.update_target()
epsilon = max(EPSILON_END, epsilon * EPSILON_DECAY)
print(f"Episode {episode}, Total Reward: {total_reward}, Epsilon: {epsilon:.2f}")
return model
def main():
print("PikasuBirdAi: AI-powered detection and targeting system")
print("Initializing components...")
components = {
'data_collector': DataCollector(),
'image_recognizer': ImageRecognizer(),
'object_detector': ObjectDetector(),
'threat_assessor': ThreatAssessor(),
'response_generator': ResponseGenerator()
}
env = BacterialThreatEnv(components)
# Add the model_trainer after creating the environment
components['model_trainer'] = ModelTrainerWrapper(input_shape=env.observation_space.shape, n_actions=env.action_space.n)
print("Training DQN agent...")
trained_model = dqn_learning(env, num_episodes=1000)
print("System initialized and trained. Ready for threat detection and response.")
# Example of using the trained agent
state = env.reset()
done = False
total_reward = 0
while not done:
state = jnp.array(state, dtype=jnp.float32)
q_values = trained_model.predict(state)
action = int(q_values[0].argmax())
state, reward, done, _ = env.step(action)
total_reward += reward
print(f"Action taken: {action}, Reward: {reward}")
print(f"Episode finished. Total reward: {total_reward}")
if __name__ == "__main__":
main()