-
Notifications
You must be signed in to change notification settings - Fork 0
/
main_deletion.py
242 lines (214 loc) · 10.4 KB
/
main_deletion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
import numpy as np
import scipy.sparse as sp
import utils
ALPHA = 0.85
EPSILON = 1e-3
TRACKING_METHOD = 1 # 1 for OSP, 2 for EvePPR-APP, 3 for EvePPR
LOAD_INSTEAD_OF_RECALCULATION = 1
LOAD_MAX = 32
ABLATION = 0
DATASET_NAME = 'bitcoinalpha'
from dataprocessing_temporal_bitcoinalpha import is_in_subgraph, match_from_sub_to_whole, match_from_whole_to_sub
import time
import pdb
HAVE_NODE_ATTR = 1
HAVE_EDGE_ATTR = 1
def get_graph_info(graph_file_name, node_attr_file_name):
node_attr_set = set()
edge_attr_set = set()
graph_file = open(graph_file_name)
node_attr_file = open(node_attr_file_name)
for line in graph_file.readlines():
items = line.strip().split(',')
edge_attr = int(items[2])
edge_attr_set.add(edge_attr)
for line in node_attr_file.readlines():
items = line.strip().split(',')
node_attr = int(items[1])
node_attr_set.add(node_attr)
graph_file.close()
node_attr_file.close()
node_attr_list = []
edge_attr_list = []
for node_attr in node_attr_set:
node_attr_list.append(node_attr)
for edge_attr in edge_attr_set:
edge_attr_list.append(edge_attr)
return len(node_attr_set), len(edge_attr_set), node_attr_list, edge_attr_list
def build_matrices_accelerated(graph_file_name, node_attr_file_name, num_node_attr):
graph_file = graph_file_name
nodes_set = set()
node_attr_file_open = open(node_attr_file_name, 'r')
# first going through to count number of nodes
for line in node_attr_file_open.readlines():
items = line.strip().split(',')
node = int(items[0])
nodes_set.add(node)
nnodes = len(nodes_set)
adj_matrix = sp.lil_matrix((nnodes, nnodes))
node_attr_matrix = sp.lil_matrix((nnodes, nnodes))
node_attr_matrix_acce = sp.lil_matrix((nnodes, num_node_attr))
edge_attr_matrix = sp.lil_matrix((nnodes, nnodes))
node_attr_file_open.close()
# second going through to set up the adjacency (and possibly edge attribute) matrix
graph_file_open = open(graph_file, 'r')
for line in graph_file_open.readlines():
items = line.strip().split(',')
node_0 = int(items[0])
node_1 = int(items[1])
adj_matrix[node_0, node_1] = 1
adj_matrix[node_1, node_0] = 1
if (HAVE_EDGE_ATTR != 0):
edge_attr_matrix[node_0, node_1] = int(items[2])
edge_attr_matrix[node_1, node_0] = int(items[2])
graph_file_open.close()
# set up the node attribute matrix using a seperated file
if (HAVE_NODE_ATTR != 0):
node_attr_file_open = open(node_attr_file_name, 'r')
for line in node_attr_file_open.readlines():
items = line.strip().split(',')
node = int(items[0])
attr_of_node = int(items[1])
node_attr_matrix_acce[node, attr_of_node] = 1
node_attr_matrix[node, node] = attr_of_node
return nnodes, adj_matrix, node_attr_matrix, edge_attr_matrix, node_attr_matrix_acce
if __name__ == '__main__':
start_time = time.time()
num_node_attr, num_edge_attr, node_attr_list, edge_attr_list = get_graph_info('datasets/' + DATASET_NAME + '-temporal/edge.txt', 'datasets/' + DATASET_NAME + '-temporal/node_attr.txt')
nnodes_1, adj_matrix_1, node_attr_matrix_1, edge_attr_matrix_1, node_attr_matrix_acce_1 = build_matrices_accelerated(
'datasets/' + DATASET_NAME + '-temporal/edge_sorted_sub.txt', 'datasets/' + DATASET_NAME + '-temporal/node_attr_sub.txt', max(node_attr_list) + 1
)
nnodes_2, adj_matrix_2, node_attr_matrix_2, edge_attr_matrix_2, node_attr_matrix_acce_2 = build_matrices_accelerated(
'datasets/' + DATASET_NAME + '-temporal/edge_sorted.txt', 'datasets/' + DATASET_NAME + '-temporal/node_attr.txt', max(node_attr_list) + 1
)
initial_graph_file = open('datasets/' + DATASET_NAME + '-temporal/edge_sorted_initial.txt', 'r')
start_line = len(initial_graph_file.readlines())
initial_graph_file.close()
graph_file = open('datasets/' + DATASET_NAME + '-temporal/edge_sorted.txt', 'r')
all_line = graph_file.readlines()
graph_file.close()
end_line = len(all_line)
# data structure for pagerank vector updating
P_dict = {}
M = {}
q = {}
v = {}
time_record = []
# data structure for filtering
all_nodes_in_whole = set()
for node in range(nnodes_2):
all_nodes_in_whole.add(node)
candidate = {node: all_nodes_in_whole.copy() for node in range(nnodes_1)}
F = {} # F((j, i)) will be used to record which (NodeAttribute, EdgeAttribute) filtered node j in G_2 away from candidate[i]
# get the ground truth match
ground_truth_file = open('datasets/' + DATASET_NAME + '-temporal/ground_truth.txt', 'r')
ground_truth = {}
for line in ground_truth_file.readlines():
items = line.strip().split(',')
node_in_whole = int(items[0])
node_in_sub = int(items[1])
ground_truth[node_in_sub] = node_in_whole
# pre-computing
if not LOAD_INSTEAD_OF_RECALCULATION:
# transition matrix P
P = utils.calculate_transition_matrix(node_attr_list, edge_attr_list, nnodes_1, adj_matrix_1, node_attr_matrix_1, edge_attr_matrix_1, node_attr_matrix_acce_1, nnodes_2, adj_matrix_2, node_attr_matrix_2, edge_attr_matrix_2, node_attr_matrix_acce_2)
# pre-knowledge h
h = utils.calculate_pre_knowledge_h(nnodes_1, nnodes_2, candidate, adj_matrix_1, node_attr_matrix_1, edge_attr_matrix_1, adj_matrix_2, node_attr_matrix_2, edge_attr_matrix_2, F)
sp.save_npz('saved_data_' + DATASET_NAME + '_deletion' + '/P_matrix_start.npz', P)
np.save('saved_data_' + DATASET_NAME + '_deletion' + '/h_array_start.npy', h)
else:
P = sp.load_npz('saved_data_' + DATASET_NAME + '_deletion' + '/P_matrix_start.npz')
h = np.load('saved_data_' + DATASET_NAME + '_deletion' + '/h_array_start.npy')
P_dict[0] = P
h_uniform = utils.uniform_h(nnodes_1, nnodes_2)
# the one-hot solution
if (TRACKING_METHOD == 3):
P = P.tocsr()
number = 0
onehot_ppr = utils.calc_onehot_ppr_matrix(P, ALPHA, 2).tolil().transpose()
for i in range(nnodes_1 * nnodes_2):
q[i] = onehot_ppr[i, :]
M[i] = P_dict[0]
if (number % 100000) == 0:
print(number)
number += 1
pre_end_time = time.time()
print("data processing and precomputing time:", pre_end_time - start_time)
# initial pagerank vector
if (ABLATION):
print('setting h_0 to uniform distribution in ablation study')
h = h_uniform.copy()
if (TRACKING_METHOD == 1):
h = h_uniform.copy()
v[0] = utils.calc_ppr_by_power_iteration(P, ALPHA, h, 20)
exp_match = utils.greedy_match(v[0], nnodes_1, nnodes_2)
hit_rate1 = utils.check_greedy_hit1_with_return(exp_match, ground_truth, nnodes_1)
acc_record = []
acc_record.append(hit_rate1)
t = 0
counter = 0
for line_index in range(start_line, end_line):
if (counter == LOAD_MAX):
pdb.set_trace()
sub_change = 0
items = all_line[line_index].strip().split(',')
node1 = int(items[0])
node2 = int(items[1])
edge_attr = int(items[2])
t += 1
adj_matrix_2[node1, node2] = 0
adj_matrix_2[node2, node1] = 0
edge_attr_matrix_2[node1, node2] = 0
edge_attr_matrix_2[node2, node1] = 0
if is_in_subgraph(node1) and is_in_subgraph(node2):
if edge_attr_matrix_1[match_from_whole_to_sub(node1), match_from_whole_to_sub(node2)] != 0:
sub_change = 1
if (sub_change == 0):
continue
# if comes to here, sub graph is changed
counter += 1
print("time:", t)
print("line in all edges:", line_index + 1)
print("subchange:", counter)
node_sub_1 = match_from_whole_to_sub(node1)
node_sub_2 = match_from_whole_to_sub(node2)
adj_matrix_1[node_sub_1, node_sub_2] = 0
adj_matrix_1[node_sub_2, node_sub_1] = 0
edge_attr_matrix_1[node_sub_1, node_sub_2] = 0
edge_attr_matrix_1[node_sub_2, node_sub_1] = 0
if LOAD_INSTEAD_OF_RECALCULATION and (counter <= LOAD_MAX):
P_new = sp.load_npz('./saved_data_' + DATASET_NAME + '_deletion' + '/P_matrix_' + str(counter) + '.npz')
h_new_sp = sp.load_npz('./saved_data_' + DATASET_NAME + '_deletion' + '/h_array_sp_' + str(counter) + '.npz')
h_new = h_new_sp.toarray().ravel()
else:
P_new = utils.calculate_transition_matrix(node_attr_list, edge_attr_list, nnodes_1, adj_matrix_1, node_attr_matrix_1, edge_attr_matrix_1, node_attr_matrix_acce_1, nnodes_2, adj_matrix_2, node_attr_matrix_2, edge_attr_matrix_2, node_attr_matrix_acce_2)
h_new = utils.calculate_pre_knowledge_h(nnodes_1, nnodes_2, candidate, adj_matrix_1, node_attr_matrix_1, edge_attr_matrix_1, adj_matrix_2, node_attr_matrix_2, edge_attr_matrix_2, F)
sp.save_npz('./saved_data_' + DATASET_NAME + '_deletion' + '/P_matrix_' + str(counter) + '.npz', P_new)
h_new_sp = sp.csr_matrix(h_new)
sp.save_npz('./saved_data_' + DATASET_NAME + '_deletion' + '/h_array_sp_' + str(counter) + '.npz', h_new_sp)
time1 = time.time()
if TRACKING_METHOD == 1:
v[counter] = utils.osp(v[counter-1], P, P_new, ALPHA, EPSILON, 1)
elif TRACKING_METHOD == 2:
v[counter] = utils.tracking_method_two(v[counter-1], P, P_new, h_new, ALPHA, EPSILON)
else: # TRACKING_METHOD == 3
P_dict[counter] = P_new.copy()
v_mid = utils.osp(v[counter-1], P, P_new, ALPHA, EPSILON, 1)
delta_h = h_new - h
print("number of changed elements in h:", np.count_nonzero(delta_h))
for i in range(nnodes_1 * nnodes_2):
if delta_h[i] != 0:
q_new = utils.osp(q[i].toarray().ravel(), M[i], P_new, ALPHA, EPSILON, 0)
q[i] = sp.lil_matrix(q_new)
M[i] = P_dict[counter]
v_mid = v_mid + delta_h[i] * q_new
v[counter] = v_mid
time2 = time.time()
print("tracking time: ", time2 - time1)
time_record.append(time2 - time1)
P = P_new.copy()
h = h_new.copy()
exp_match = utils.greedy_match(v[counter], nnodes_1, nnodes_2)
hit_rate1 = utils.check_greedy_hit1_with_return(exp_match, ground_truth, nnodes_1)
acc_record.append(hit_rate1)
pdb.set_trace()