-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
35 lines (33 loc) · 1.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
from data import CloudDataset
import pandas as pd
import torch
from torch.utils.data import DataLoader
import config
import utils
train_x = pd.read_csv("data/train_x.csv").drop(columns="Unnamed: 0")
train_y = pd.read_csv("data/train_y.csv").drop(columns="Unnamed: 0")
val_x = pd.read_csv("data/val_x.csv").drop(columns="Unnamed: 0")
val_y = pd.read_csv("data/val_y.csv").drop(columns="Unnamed: 0")
training_dataset = CloudDataset(train_x, config.bands, train_y,
config.train_transforms)
validation_dataset = CloudDataset(val_x, config.bands, val_y,
config.val_transforms)
train_loader = DataLoader(dataset=training_dataset, batch_size=config.train_batch_size,
shuffle=True, pin_memory=True, num_workers=2)
val_loader = DataLoader(dataset=validation_dataset, batch_size=config.val_batch_size,
shuffle=False, pin_memory=True, num_workers=2)
model = config.model
model.to(config.device)
loss_fn = config.loss_function
optimizer = config.optimizer(model.parameters(), lr=config.learning_rate)
scaler = config.scaler
best_iou = -1
for i in range(config.epochs):
utils.train_fn(train_loader, model, optimizer, loss_fn, scaler)
iou = utils.val_fn(val_loader, model)
if iou > best_iou:
torch.save(model.state_dict(), f"model.pth")
torch.save(optimizer.state_dict(), f"optim.pth")
best_iou = iou
print("-"*50)
print(f"Training done the best performing model has an mIoU score of : {best_iou}")