forked from facebookresearch/fairseq
-
Notifications
You must be signed in to change notification settings - Fork 0
/
preprocess_GLUE_tasks.sh
executable file
·185 lines (168 loc) · 5.6 KB
/
preprocess_GLUE_tasks.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
#!/bin/bash
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
# raw glue data as downloaded by glue download script (https://gist.github.com/W4ngatang/60c2bdb54d156a41194446737ce03e2e)
if [[ $# -ne 2 ]]; then
echo "Run as following:"
echo "./examples/roberta/preprocess_GLUE_tasks.sh <glud_data_folder> <task_name>"
exit 1
fi
GLUE_DATA_FOLDER=$1
# download bpe encoder.json, vocabulary and fairseq dictionary
wget -N 'https://dl.fbaipublicfiles.com/fairseq/gpt2_bpe/encoder.json'
wget -N 'https://dl.fbaipublicfiles.com/fairseq/gpt2_bpe/vocab.bpe'
wget -N 'https://dl.fbaipublicfiles.com/fairseq/gpt2_bpe/dict.txt'
TASKS=$2 # QQP
if [ "$TASKS" = "ALL" ]
then
TASKS="QQP MNLI QNLI MRPC RTE STS-B SST-2 CoLA"
fi
for TASK in $TASKS
do
echo "Preprocessing $TASK"
TASK_DATA_FOLDER="$GLUE_DATA_FOLDER/$TASK"
echo "Raw data as downloaded from glue website: $TASK_DATA_FOLDER"
SPLITS="train dev test"
INPUT_COUNT=2
if [ "$TASK" = "QQP" ]
then
INPUT_COLUMNS=( 4 5 )
TEST_INPUT_COLUMNS=( 2 3 )
LABEL_COLUMN=6
elif [ "$TASK" = "MNLI" ]
then
SPLITS="train dev_matched dev_mismatched test_matched test_mismatched"
INPUT_COLUMNS=( 9 10 )
TEST_INPUT_COLUMNS=( 9 10 )
DEV_LABEL_COLUMN=16
LABEL_COLUMN=12
elif [ "$TASK" = "QNLI" ]
then
INPUT_COLUMNS=( 2 3 )
TEST_INPUT_COLUMNS=( 2 3 )
LABEL_COLUMN=4
elif [ "$TASK" = "MRPC" ]
then
INPUT_COLUMNS=( 4 5 )
TEST_INPUT_COLUMNS=( 4 5 )
LABEL_COLUMN=1
elif [ "$TASK" = "RTE" ]
then
INPUT_COLUMNS=( 2 3 )
TEST_INPUT_COLUMNS=( 2 3 )
LABEL_COLUMN=4
elif [ "$TASK" = "STS-B" ]
then
INPUT_COLUMNS=( 8 9 )
TEST_INPUT_COLUMNS=( 8 9 )
LABEL_COLUMN=10
# Following are single sentence tasks.
elif [ "$TASK" = "SST-2" ]
then
INPUT_COLUMNS=( 1 )
TEST_INPUT_COLUMNS=( 2 )
LABEL_COLUMN=2
INPUT_COUNT=1
elif [ "$TASK" = "CoLA" ]
then
INPUT_COLUMNS=( 4 )
TEST_INPUT_COLUMNS=( 2 )
LABEL_COLUMN=2
INPUT_COUNT=1
fi
# Strip out header and filter lines that don't have expected number of fields.
rm -rf "$TASK_DATA_FOLDER/processed"
mkdir -p "$TASK_DATA_FOLDER/processed"
for SPLIT in $SPLITS
do
# CoLA train and dev doesn't have header.
if [[ ( "$TASK" = "CoLA") && ( "$SPLIT" != "test" ) ]]
then
cp "$TASK_DATA_FOLDER/$SPLIT.tsv" "$TASK_DATA_FOLDER/processed/$SPLIT.tsv.temp";
else
tail -n +2 "$TASK_DATA_FOLDER/$SPLIT.tsv" > "$TASK_DATA_FOLDER/processed/$SPLIT.tsv.temp";
fi
# Remove unformatted lines from train and dev files for QQP dataset.
if [[ ( "$TASK" = "QQP") && ( "$SPLIT" != "test" ) ]]
then
awk -F '\t' -v NUM_FIELDS=6 'NF==NUM_FIELDS{print}{}' "$TASK_DATA_FOLDER/processed/$SPLIT.tsv.temp" > "$TASK_DATA_FOLDER/processed/$SPLIT.tsv";
else
cp "$TASK_DATA_FOLDER/processed/$SPLIT.tsv.temp" "$TASK_DATA_FOLDER/processed/$SPLIT.tsv";
fi
rm "$TASK_DATA_FOLDER/processed/$SPLIT.tsv.temp";
done
# Split into input0, input1 and label
for SPLIT in $SPLITS
do
for INPUT_TYPE in $(seq 0 $((INPUT_COUNT-1)))
do
if [[ "$SPLIT" != test* ]]
then
COLUMN_NUMBER=${INPUT_COLUMNS[$INPUT_TYPE]}
else
COLUMN_NUMBER=${TEST_INPUT_COLUMNS[$INPUT_TYPE]}
fi
cut -f"$COLUMN_NUMBER" "$TASK_DATA_FOLDER/processed/$SPLIT.tsv" > "$TASK_DATA_FOLDER/processed/$SPLIT.raw.input$INPUT_TYPE";
done
if [[ "$SPLIT" != test* ]]
then
if [ "$TASK" = "MNLI" ] && [ "$SPLIT" != "train" ]
then
cut -f"$DEV_LABEL_COLUMN" "$TASK_DATA_FOLDER/processed/$SPLIT.tsv" > "$TASK_DATA_FOLDER/processed/$SPLIT.label";
else
cut -f"$LABEL_COLUMN" "$TASK_DATA_FOLDER/processed/$SPLIT.tsv" > "$TASK_DATA_FOLDER/processed/$SPLIT.label";
fi
fi
# BPE encode.
for INPUT_TYPE in $(seq 0 $((INPUT_COUNT-1)))
do
LANG="input$INPUT_TYPE"
echo "BPE encoding $SPLIT/$LANG"
python -m examples.roberta.multiprocessing_bpe_encoder \
--encoder-json encoder.json \
--vocab-bpe vocab.bpe \
--inputs "$TASK_DATA_FOLDER/processed/$SPLIT.raw.$LANG" \
--outputs "$TASK_DATA_FOLDER/processed/$SPLIT.$LANG" \
--workers 60 \
--keep-empty;
done
done
# Remove output directory.
rm -rf "$TASK-bin"
DEVPREF="$TASK_DATA_FOLDER/processed/dev.LANG"
TESTPREF="$TASK_DATA_FOLDER/processed/test.LANG"
if [ "$TASK" = "MNLI" ]
then
DEVPREF="$TASK_DATA_FOLDER/processed/dev_matched.LANG,$TASK_DATA_FOLDER/processed/dev_mismatched.LANG"
TESTPREF="$TASK_DATA_FOLDER/processed/test_matched.LANG,$TASK_DATA_FOLDER/processed/test_mismatched.LANG"
fi
# Run fairseq preprocessing:
for INPUT_TYPE in $(seq 0 $((INPUT_COUNT-1)))
do
LANG="input$INPUT_TYPE"
fairseq-preprocess \
--only-source \
--trainpref "$TASK_DATA_FOLDER/processed/train.$LANG" \
--validpref "${DEVPREF//LANG/$LANG}" \
--testpref "${TESTPREF//LANG/$LANG}" \
--destdir "$TASK-bin/$LANG" \
--workers 60 \
--srcdict dict.txt;
done
if [[ "$TASK" != "STS-B" ]]
then
fairseq-preprocess \
--only-source \
--trainpref "$TASK_DATA_FOLDER/processed/train.label" \
--validpref "${DEVPREF//LANG/label}" \
--destdir "$TASK-bin/label" \
--workers 60;
else
# For STS-B output range is converted to be between: [0.0, 1.0]
mkdir -p "$TASK-bin/label"
awk '{print $1 / 5.0 }' "$TASK_DATA_FOLDER/processed/train.label" > "$TASK-bin/label/train.label"
awk '{print $1 / 5.0 }' "$TASK_DATA_FOLDER/processed/dev.label" > "$TASK-bin/label/valid.label"
fi
done