diff --git a/nideconv/regressors.py b/nideconv/regressors.py index 6a25d20..9ca00e2 100644 --- a/nideconv/regressors.py +++ b/nideconv/regressors.py @@ -293,8 +293,6 @@ def create_design_matrix(self, oversample=1): L = self.get_basis_function(oversample) - effective_sample_rate = self.sample_rate * oversample - columns = pd.MultiIndex.from_product(([self.name], self.covariates.columns, L.columns), names=['event_type', 'covariate', 'regressor']) oversampled_timepoints = np.linspace(0, diff --git a/nideconv/response_fitter.py b/nideconv/response_fitter.py index 2e47ff1..58caeed 100644 --- a/nideconv/response_fitter.py +++ b/nideconv/response_fitter.py @@ -80,7 +80,11 @@ def add_confounds(self, name, confound): self._add_regressor(confound) - def _add_regressor(self, regressor, oversample=1): + def _add_regressor(self, regressor, oversample=None): + + if oversample is None: + oversample = self.oversample_design_matrix + regressor.create_design_matrix(oversample=oversample) if self.X.shape[1] == 0: