-
Notifications
You must be signed in to change notification settings - Fork 0
/
SampleDiscrete.m
40 lines (33 loc) · 959 Bytes
/
SampleDiscrete.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
function M = SampleDiscrete(prob, r, c)
% SAMPLE_DISCRETE Like the built in 'rand', except we draw from a non-uniform discrete distrib.
% M = sample_discrete(prob, r, c)
%
% Example: sample_discrete([0.8 0.2], 1, 10) generates a row vector of 10 random integers from {1,2},
% where the prob. of being 1 is 0.8 and the prob of being 2 is 0.2.
n = length(prob);
if nargin == 1
r = 1; c = 1;
elseif nargin == 2
c = r;
end
R = rand(r, c);
M = ones(r, c);
cumprob = cumsum(prob(:));
if n < r*c
for i = 1:n-1
M = M + (R > cumprob(i));
end
else
% loop over the smaller index - can be much faster if length(prob) >> r*c
cumprob2 = cumprob(1:end-1);
for i=1:r
for j=1:c
M(i,j) = sum(R(i,j) > cumprob2)+1;
end
end
end
% Slower, even though vectorized
%cumprob = reshape(cumsum([0 prob(1:end-1)]), [1 1 n]);
%M = sum(R(:,:,ones(n,1)) > cumprob(ones(r,1),ones(c,1),:), 3);
% convert using a binning algorithm
%M=bindex(R,cumprob);