-
Notifications
You must be signed in to change notification settings - Fork 3
/
loss_scaler.py
37 lines (29 loc) · 1.11 KB
/
loss_scaler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
""" CUDA / AMP utils
Hacked together by / Copyright 2020 Ross Wightman
"""
import torch
try:
from apex import amp
has_apex = True
except ImportError:
amp = None
has_apex = False
from timm.utils import *
__all__ = ['NativeScaler']
class NativeScaler:
state_dict_key = "amp_scaler"
def __init__(self):
self._scaler = torch.cuda.amp.GradScaler()
def __call__(self, loss, optimizer, f, data_iter, data_loader, clip_grad=None, clip_mode='norm', parameters=None, create_graph=False):
self._scaler.scale(loss).backward(create_graph=create_graph)
if clip_grad is not None:
assert parameters is not None
self._scaler.unscale_(optimizer) # unscale the gradients of optimizer's assigned params in-place
dispatch_clip_grad(parameters, clip_grad, mode=clip_mode)
data_iter = self._scaler.step(optimizer, f, data_iter, data_loader)
self._scaler.update()
return data_iter
def state_dict(self):
return self._scaler.state_dict()
def load_state_dict(self, state_dict):
self._scaler.load_state_dict(state_dict)