-
Notifications
You must be signed in to change notification settings - Fork 1
/
train_comp.py
505 lines (450 loc) · 24.6 KB
/
train_comp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
import numpy as np
import random
import os
import torch
from utils.loss_utils import l1_loss, ssim, l2_loss, lpips_loss
from gaussian_renderer.comp_renderer import render as render_comp
from gaussian_renderer import render as render_single
import sys
from scene.comp_scene import Scene
from scene.gaussian_model_nogrid import GaussianModel_nogrid as GaussianModel
from utils.general_utils import safe_state
from tqdm import tqdm
from utils.image_utils import psnr
from argparse import ArgumentParser, Namespace
from arguments import ModelParams, PipelineParams, OptimizationParams, ModelHiddenParams
from torch.utils.data import DataLoader
from utils.timer import Timer
from importlib import import_module
# import lpips
import gc
from torchvision import transforms as T
from utils.scene_utils import render_training_image
from time import time
to8b = lambda x : (255*np.clip(x.cpu().numpy(),0,1)).astype(np.uint8)
try:
from torch.utils.tensorboard import SummaryWriter
TENSORBOARD_FOUND = True
except ImportError:
TENSORBOARD_FOUND = False
from guidance.sd_utils import StableDiffusion
from PIL import Image
from torchvision.transforms import ToTensor
from plyfile import PlyData
from scipy.spatial.transform import Rotation as R
def prepare_offset(rotation, translation):
def func(pts):
return (torch.from_numpy(rotation).float().cuda().detach() @ pts.permute(1, 0)).permute(1, 0) + torch.from_numpy(translation).float().cuda().detach()
return func
def find_rotation_matrix(v1, v2):
"""
Find the rotation matrix that aligns v1 to v2.
Parameters:
- v1: The initial vector.
- v2: The target vector.
Returns:
- The rotation matrix that rotates v1 to align with v2.
"""
# Normalize the target vector
if np.linalg.norm(v2) > 1e-3:
v2_normalized = v2 / np.linalg.norm(v2)
else:
v2_normalized = v2
# Axis of rotation (cross product of v1 and v2)
axis = np.cross(v1, v2_normalized)
if np.linalg.norm(axis) < 1e-6:
if np.dot(v1, v2) >= 0:
# The vectors are parallel, no rotation needed
rotation_matrix = np.eye(3)
else:
# The vectors are anti-parallel, rotate 180 degrees around any orthogonal axis
rotation_matrix = R.from_euler('x', 180, degrees=True).as_matrix()
else:
# Angle of rotation
angle = np.arccos(np.dot(v1, v2_normalized))
# Handle the case where the rotation is undefined because the vectors are parallel/anti-parallel
# Normalize the rotation axis
axis = axis / np.linalg.norm(axis)
# Rodrigues' rotation formula components
K = np.array([[0, -axis[2], axis[1]],
[axis[2], 0, -axis[0]],
[-axis[1], axis[0], 0]])
I = np.identity(3)
# Rotation matrix
rotation_matrix = I + np.sin(angle) * K + (1 - np.cos(angle)) * np.dot(K, K)
return rotation_matrix # [3, 3]
def get_rotation(prev_pos, next_pos):
new_vec = next_pos - prev_pos
canonical = np.array([1, 0, 0])
# canonical = np.array([0, 0, 1])
return find_rotation_matrix(canonical, new_vec)
def query_trajectory(generate_coordinates, t0, fps, frame_num):
# get_location = lambda t: np.array((R * np.sin(2 * np.pi * t * rot_speed), 0, R * np.cos(2 * np.pi * t * rot_speed)))
translation_list = [generate_coordinates(t0 + i * fps) for i in range(frame_num)]
return translation_list
def scene_reconstruction(dataset, opt, hyper, pipe, testing_iterations, saving_iterations,
checkpoint_iterations, checkpoint, debug_from,
gaussians, scene, stage, tb_writer, train_iter,timer, args):
first_iter = 0
torch.cuda.empty_cache()
gc.collect()
print(f'Start training of stage {stage}: ')
obj_prompts = []
if opt.video_sds_type == 'zeroscope':
from guidance.zeroscope_utils import ZeroScope
zeroscope = ZeroScope('cuda', fp16=True)
emb_zs = zeroscope.get_text_embeds([opt.prompt])
for ww in opt.obj_prompt:
obj_prompts.append(zeroscope.get_text_embeds([ww]))
else:
from videocrafter.scripts.evaluation.videocrafter2_utils import VideoCrafter2
from omegaconf import OmegaConf
vc_model_config = OmegaConf.load('videocrafter/configs/inference_t2v_512_v2.0.yaml').pop("model", OmegaConf.create())
vc2 = VideoCrafter2(vc_model_config, ckpt_path='model.ckpt', weights_dtype=torch.float16, device='cuda')
emb_zs = vc2.model.get_learned_conditioning([opt.prompt])
neg_emb_zs = vc2.model.get_learned_conditioning(["text, watermark, copyright, blurry, nsfw"])
cond = {"c_crossattn": [emb_zs], "fps": torch.tensor([6]*emb_zs.shape[0]).to(vc2.model.device).long()}
un_cond = {"c_crossattn": [neg_emb_zs], "fps": torch.tensor([6]*emb_zs.shape[0]).to(vc2.model.device).long()}
for ww in opt.obj_prompt:
emb_zs = vc2.model.get_learned_conditioning([ww])
obj_prompts.append({"c_crossattn": [emb_zs], "fps": torch.tensor([6]*emb_zs.shape[0]).to(vc2.model.device).long()})
sd = StableDiffusion('cuda', fp16=True, sd_version='2.1')
sd.get_text_embeds([opt.prompt], negative_prompts=['static statue, text, watermark, copyright, blurry, nsfw'])
sd.get_objects_text_embeds(opt.obj_prompt, negative_prompts=['static statue, text, watermark, copyright, blurry, nsfw'])
stage_ = ['fine']
train_iter_ = [opt.iterations]
white_bg = torch.tensor([1, 1, 1], dtype=torch.float32, device="cuda", requires_grad=False)
black_bg = torch.tensor([0, 0, 0], dtype=torch.float32, device="cuda", requires_grad=False)
for cur_stage, train_iter in zip(stage_, train_iter_):
for gs in gaussians:
gs.training_setup(opt)
if checkpoint:
(model_params, first_iter) = torch.load(checkpoint)
for gs in gaussians:
gs.restore(model_params, opt)
iter_start = torch.cuda.Event(enable_timing = True)
iter_end = torch.cuda.Event(enable_timing = True)
viewpoint_stack = None
ema_loss_for_log = 0.0
final_iter = train_iter
progress_bar = tqdm(range(first_iter, final_iter), desc=f"[{args.expname}] Training progress")
offset_list = []
for gs in gaussians:
offset_list.append(lambda x:x)
func_name = opt.func_name
p, m = func_name.rsplit('.', 1)
mod = import_module(p)
generate_coordinates = getattr(mod, m)
translation_list = query_trajectory(generate_coordinates, 0, 1 / 16, 16 + 1)
rotation_list = [get_rotation(translation_list[i], translation_list[i + 1]) for i in range(len(translation_list) - 1)]
func = [prepare_offset(rotation_list[i], translation_list[i]) for i in range(len(rotation_list))]
for iteration in range(first_iter, final_iter+1):
stage = cur_stage
loss_weight = 1
if np.random.random() < 0.5:
background = white_bg
else:
background = black_bg
iter_start.record()
for gs in gaussians:
gs.update_learning_rate(iteration)
if not viewpoint_stack:
viewpoint_stack = scene.getTrainCameras()
viewpoint_stack_loader = DataLoader(viewpoint_stack, batch_size=1,shuffle=True,num_workers=4,collate_fn=list)
frame_num = viewpoint_stack.pose0_num
loader = iter(viewpoint_stack_loader)
try:
data = next(loader)
except StopIteration:
print("reset dataloader")
batch_size = 1
loader = iter(viewpoint_stack_loader)
if (iteration - 1) == debug_from:
pipe.debug = True
images = []
radii_list = []
visibility_filter_list = []
viewspace_point_tensor_list = []
dx = []
out_pts = []
viewpoint_cam = data[0]['rand_poses']
fps = 1 / frame_num
t0 = 0
sds_idx_list = range(frame_num)
if np.random.random() < 0.8:
use_comp = True
else:
use_comp = False
for i in sds_idx_list:
time = torch.tensor([t0 + i * fps]).unsqueeze(0).float()
offset_list[-1] = func[i]
if use_comp:
render_pkg = render_comp(viewpoint_cam[0], gaussians, pipe, background, stage=stage, time=time, offset=offset_list, scales_list=opt.scales, pre_scale=opt.pre_scale)
else:
# render individual object
gs_idx = random.choice(range(len(gaussians)))
render_pkg = render_single(viewpoint_cam[0], (gaussians[gs_idx]), pipe, background, stage=stage, time=time, offset=offset_list[gs_idx], scales_preset=opt.scales[gs_idx], pre_scale=opt.pre_scale)
image, viewspace_point_tensor, visibility_filter, radii = render_pkg["render"], render_pkg["viewspace_points"], render_pkg["visibility_filter"], render_pkg["radii"]
fg_mask = render_pkg['alpha']
rgba = torch.cat([image, fg_mask], dim=0)
images.append(rgba.unsqueeze(0))
if 'dx' in render_pkg:
dx.append(render_pkg['dx'])
radii_list.append(radii.unsqueeze(0))
visibility_filter_list.append(visibility_filter.unsqueeze(0))
viewspace_point_tensor_list.append(viewspace_point_tensor)
radii = torch.cat(radii_list,0).max(dim=0).values
visibility_filter = torch.cat(visibility_filter_list).any(dim=0)
image_tensor = torch.cat(images,0)
if len(out_pts):
out_pts = torch.stack(out_pts, 0)
if use_comp:
if opt.video_sds_type == 'zeroscope':
loss = zeroscope.train_step(image_tensor[:, :3], emb_zs)
else:
loss = vc2.train_step(image_tensor[:, :3].unsqueeze(0).permute(0, 2, 1, 3, 4), cond, un_cond, cfg=opt.cfg, cfg_temporal=opt.cfg_temporal, as_latent=False)
# img loss for comp renderings
randints = list(range(16))
np.random.shuffle(randints)
img_loss = sd.train_step(image_tensor[randints[0]:randints[0]+1, :3], background=background) + sd.train_step(image_tensor[randints[1]:randints[1]+1, :3], background=background) \
+ sd.train_step(image_tensor[randints[2]:randints[2]+1, :3], background=background) + sd.train_step(image_tensor[randints[3]:randints[3]+1, :3], background=background)
print(f"origin loss is {loss}, image_loss with weight {opt.image_weight} is {img_loss * opt.image_weight}")
loss = img_loss * opt.image_weight + loss * loss_weight
if opt.with_reg:
dx_nn_loss = []
for cur_dx in dx:
tot = cur_dx.shape[0]
dx_nn_loss.append(gaussians[0].get_nn_loss(cur_dx[:tot//2]))
dx_nn_loss.append(gaussians[1].get_nn_loss(cur_dx[tot//2:]))
# values inside the list are already mean-ed
loss_nn = torch.stack(dx_nn_loss).sum()
tb_writer.add_scalar(f'{stage}/dx_nn_comp', loss_nn.item(), iteration)
print(f'in comp loss_nn with weight {opt.nn_weight} is {loss_nn * opt.nn_weight}')
loss += loss_nn * opt.nn_weight
else:
# print(len(obj_prompts), gs_idx)
if opt.video_sds_type == 'zeroscope':
loss = zeroscope.train_step(image_tensor[:, :3], obj_prompts[gs_idx])
else:
loss = vc2.train_step(image_tensor[:, :3].unsqueeze(0).permute(0, 2, 1, 3, 4), obj_prompts[gs_idx], un_cond, cfg=opt.cfg, cfg_temporal=opt.cfg_temporal, as_latent=False)
randints = list(range(16))
np.random.shuffle(randints)
img_loss = sd.train_step(image_tensor[randints[0]:randints[0]+1, :3], background=background, obj_id=gs_idx) + sd.train_step(image_tensor[randints[1]:randints[1]+1, :3], background=background, obj_id=gs_idx) \
+ sd.train_step(image_tensor[randints[2]:randints[2]+1, :3], background=background, obj_id=gs_idx) + sd.train_step(image_tensor[randints[3]:randints[3]+1, :3], background=background, obj_id=gs_idx)
print(f"origin loss is {loss}, image_loss with weight {opt.image_weight} is {img_loss * opt.image_weight}")
loss = img_loss * opt.image_weight + loss * loss_weight
if opt.with_reg:
dx_nn_loss = []
for cur_dx in dx:
dx_nn_loss.append(gaussians[gs_idx].get_nn_loss(cur_dx))
loss_nn = torch.stack(dx_nn_loss).sum()
tb_writer.add_scalar(f'{stage}/dx_nn_sep', loss_nn.item(), iteration)
print(f'in seperate loss_nn with weight {opt.nn_weight} is {loss_nn * opt.nn_weight}')
loss += loss_nn * opt.nn_weight
if stage == 'fine':
if (not use_comp) and gs_idx == 0:
loss_dx0 = torch.stack(dx).mean().abs()
tb_writer.add_scalar(f'{stage}/loss_dx0_mean', loss_dx0.item(), iteration)
loss_dx0 = torch.stack(dx).abs().sum()
loss += loss_dx0 * opt.loss_dx_weight
tb_writer.add_scalar(f'{stage}/loss_dx-first', loss_dx0.item(), iteration)
else:
loss_dx0 = torch.stack(dx)
loss_dx0 = loss_dx0[:, :int(gaussians[0]._xyz.shape[0])]
loss_dx0 = torch.stack(dx).abs().sum()
loss += loss_dx0 * opt.loss_dx_weight
tb_writer.add_scalar(f'{stage}/loss_dx-first', loss_dx0.item(), iteration)
if stage == "fine" and hyper.time_smoothness_weight != 0:
tv_loss = torch.sum([gs.compute_regulation(hyper.time_smoothness_weight, hyper.plane_tv_weight, hyper.l1_time_planes) for gs in gaussians])
loss += tv_loss
tb_writer.add_scalar(f'{stage}/loss_tv', tv_loss.item(), iteration)
loss.backward()
viewspace_point_tensor_grad = torch.zeros_like(viewspace_point_tensor)
for idx in range(0, len(viewspace_point_tensor_list)):
if viewspace_point_tensor_list[idx].grad is not None:
viewspace_point_tensor_grad = viewspace_point_tensor_grad + viewspace_point_tensor_list[idx].grad
iter_end.record()
with torch.no_grad():
ema_loss_for_log = 0.4 * loss.item() + 0.6 * ema_loss_for_log
total_point = sum([gs._xyz.shape[0] for gs in gaussians])
if iteration % 10 == 0:
progress_bar.set_postfix({"Loss": f"{ema_loss_for_log:.{7}f}",
"point":f"{total_point}"})
progress_bar.update(10)
if iteration == opt.iterations:
progress_bar.close()
timer.pause()
training_report(tb_writer, iteration, loss, l1_loss, iter_start.elapsed_time(iter_end), testing_iterations, scene, render_comp, pipe, background, stage, func, scales=opt.scales)
if (iteration in saving_iterations):
print("\n[ITER {}] Saving Gaussians".format(iteration))
scene.save(iteration, stage)
timer.start()
if iteration < opt.iterations:
for gs in gaussians:
gs.optimizer.step()
gs.optimizer.zero_grad(set_to_none = True)
def training(dataset, hyper, opt, pipe, testing_iterations, saving_iterations, checkpoint_iterations, checkpoint, debug_from, expname, args):
tb_writer = prepare_output_and_logger(expname)
gaussians = [GaussianModel(dataset.sh_degree, hyper) for __ in dataset.cloud_path] # init one GS model for each ply (object)
dataset.model_path = args.model_path
timer = Timer()
scene = Scene(dataset, gaussians,load_coarse=None)
timer.start()
scene_reconstruction(dataset, opt, hyper, pipe, testing_iterations, saving_iterations,
checkpoint_iterations, checkpoint, debug_from,
gaussians, scene, "coarse", tb_writer, opt.coarse_iterations,timer, args)
from datetime import datetime
def prepare_output_and_logger(expname):
if not args.model_path:
unique_str = str(datetime.today().strftime('%Y-%m-%d')) + '/' + expname + '_' + datetime.today().strftime('%H:%M:%S')
args.model_path = os.path.join("./output/", unique_str)
print("Output folder: {}".format(args.model_path))
os.makedirs(args.model_path, exist_ok = True)
with open(os.path.join(args.model_path, "cfg_args"), 'w') as cfg_log_f:
cfg_log_f.write(str(Namespace(**vars(args))))
tb_writer = None
if TENSORBOARD_FOUND:
tb_writer = SummaryWriter(args.model_path)
else:
print("Tensorboard not available: not logging progress")
return tb_writer
def training_report(tb_writer, iteration, loss, l1_loss, elapsed, testing_iterations, scene : Scene, renderFunc, pipe, bg, stage, func, scales):
if tb_writer:
# tb_writer.add_scalar(f'{stage}/train_loss_patches/l1_loss', Ll1.item(), iteration)
tb_writer.add_scalar(f'{stage}/train_loss_patchestotal_loss', loss.item(), iteration)
tb_writer.add_scalar(f'{stage}/iter_time', elapsed, iteration)
ww = iteration if stage == 'static' else iteration
offset_list = []
for gs in scene.gaussians:
offset_list.append(lambda x:x)
if iteration % 100 == 0 and ww in testing_iterations:
# if stage == 'fine':
# if ww in testing_iterations:
torch.cuda.empty_cache()
train_set = scene.getTrainCameras()
validation_configs = [{'name': 'train', 'cameras' : [train_set[idx % len(train_set)] for idx in range(10, 5000, 299)]}]
for config in validation_configs:
if config['cameras'] and len(config['cameras']) > 0:
l1_test = 0.0
psnr_test = 0.0
ti = (torch.tensor([0]).unsqueeze(0))
cam_li = config['cameras'][0]['rand_poses']
im_li = []
num = len(cam_li)
for tii in range(num):
offset_list[-1] = func[tii]
if stage == 'static':
ti = (torch.tensor([tii * 0]).unsqueeze(0).cuda())
else:
ti = (torch.tensor([tii / num]).unsqueeze(0).cuda())
viewpoint = cam_li[tii]
image = torch.clamp(renderFunc(viewpoint, scene.gaussians,stage=stage, pipe=pipe, bg_color=bg, time=ti, offset=offset_list, scales_list=scales)["render"], 0.0, 1.0)
im_li.append(image)
ww = len(im_li) // 2
r1 = torch.cat(im_li[:ww], dim=-1)
r2 = torch.cat(im_li[ww:], dim=-1)
im_li = torch.cat([r1, r2], dim=-2)
if tb_writer:
tb_writer.add_image(f"rand_seq/{stage}", im_li, global_step=iteration)
l1_test = 0.0
psnr_test = 0.0
ti = (torch.tensor([0]).unsqueeze(0))
cam_li = config['cameras'][0]['rand_poses']
im_li = []
num = len(cam_li)
for tii in range(num):
offset_list[-1] = func[tii]
if stage == 'static':
ti = (torch.tensor([tii * 0]).unsqueeze(0).cuda())
else:
ti = (torch.tensor([tii / num]).unsqueeze(0).cuda())
viewpoint = cam_li[0]
image = torch.clamp(renderFunc(viewpoint, scene.gaussians,stage=stage, pipe=pipe, bg_color=bg, time=ti, offset=offset_list, scales_list=scales)["render"], 0.0, 1.0)
im_li.append(image)
ww = len(im_li) // 2
r1 = torch.cat(im_li[:ww], dim=-1)
r2 = torch.cat(im_li[ww:], dim=-1)
im_li = torch.cat([r1, r2], dim=-2)
if tb_writer:
tb_writer.add_image(f"static_seq/{stage}", im_li, global_step=iteration)
print("\n[ITER {}] Evaluating {}".format(iteration, config['name']))
if tb_writer:
tb_writer.add_scalar(f'{stage}/total_points', scene.get_total_points(), iteration)
torch.cuda.empty_cache()
def setup_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.deterministic = True
if __name__ == "__main__":
torch.cuda.empty_cache()
parser = ArgumentParser(description="Training script parameters")
setup_seed(6666)
lp = ModelParams(parser)
op = OptimizationParams(parser)
pp = PipelineParams(parser)
hp = ModelHiddenParams(parser)
parser.add_argument('--ip', type=str, default="127.0.0.1")
parser.add_argument('--port', type=int, default=6009)
parser.add_argument('--debug_from', type=int, default=-1)
parser.add_argument('--detect_anomaly', action='store_true', default=False)
parser.add_argument("--test_iterations", nargs="+", type=int, default=[i*50 for i in range(0,300)])
parser.add_argument("--save_iterations", nargs="+", type=int, default=[2500, 3000, 3500, 4000, 4500, 5000, 7000, 8000, 9000, 14000, 20000, 30_000,45000,60000])
parser.add_argument("--quiet", action="store_true")
parser.add_argument("--checkpoint_iterations", nargs="+", type=int, default=[])
parser.add_argument("--start_checkpoint", type=str, default = None)
parser.add_argument('-e', "--expname", type=str, default = "")
parser.add_argument("--configs", type=str, default = "arguments/comp.py")
parser.add_argument("--yyypath", type=str, default = "")
parser.add_argument("--t0_frame0_rate", type=float, default = 1)
parser.add_argument("--name_override", type=str, default="")
parser.add_argument("--sds_ratio_override", type=float, default=-1)
parser.add_argument("--sds_weight_override", type=float, default=-1)
parser.add_argument("--iteration", default=-1, type=int)
parser.add_argument('--image_weight_override', type=float, default=-1)
parser.add_argument('--nn_weight_override', type=float, default=-1)
parser.add_argument('--cfg_override', type=float, default=-1)
parser.add_argument('--cfg_temporal_override', type=float, default=-1)
parser.add_argument('--loss_dx_weight_override', type=float, default=-1)
parser.add_argument('--with_reg_override', action='store_true', default=False)
args = parser.parse_args(sys.argv[1:])
args.save_iterations.append(args.iterations - 1)
if args.configs:
# import mmcv
import mmengine
from utils.params_utils import merge_hparams
# config = mmcv.Config.fromfile(args.configs)
config = mmengine.Config.fromfile(args.configs)
args = merge_hparams(args, config)
if args.name_override != '':
args.name = args.name_override
if args.sds_ratio_override != -1:
args.fine_rand_rate = args.sds_ratio_override
if args.sds_weight_override != -1:
args.lambda_zero123 = args.sds_weight_override
if args.image_weight_override != -1:
args.image_weight = args.image_weight_override
if args.nn_weight_override != -1:
args.nn_weight = args.nn_weight_override
if args.cfg_override != -1:
args.cfg = args.cfg_override
if args.cfg_temporal_override != -1:
args.cfg_temporal = args.cfg_temporal_override
if args.loss_dx_weight_override != -1:
args.loss_dx_weight = args.loss_dx_weight_override
if args.with_reg_override:
args.with_reg = args.with_reg_override
# print(args.name)
print("Optimizing " + args.model_path)
safe_state(args.quiet)
torch.autograd.set_detect_anomaly(args.detect_anomaly)
timer1 = Timer()
timer1.start()
print('Configs: ', args)
training(lp.extract(args), hp.extract(args), op.extract(args), pp.extract(args), args.test_iterations, args.save_iterations, args.checkpoint_iterations, args.start_checkpoint, args.debug_from, args.expname, args)
print("\nTraining complete.")
print('training time:',timer1.get_elapsed_time())
from render_comp import render_sets
render_sets(lp.extract(args), hp.extract(args), op.extract(args), args.iterations, pp.extract(args), skip_train=True, skip_test=True, skip_video=False, multiview_video=True)
print("\Rendering complete.")