-
Notifications
You must be signed in to change notification settings - Fork 1
/
run_TGTSF_weather.py
215 lines (180 loc) · 12.8 KB
/
run_TGTSF_weather.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import argparse
import os
import torch
from exp.exp_TGTSF_weather import Exp_Main
import random
import numpy as np
parser = argparse.ArgumentParser(description='Autoformer & Transformer family for Time Series Forecasting')
# random seed
parser.add_argument('--random_seed', type=int, default=2021, help='random seed')
# basic config
parser.add_argument('--is_training', type=int, required=True, default=1, help='status')
parser.add_argument('--model_id', type=str, required=True, default='test', help='model id')
parser.add_argument('--model', type=str, required=True, default='Autoformer',
help='model name, options: [Autoformer, Informer, Transformer]')
# data loader
parser.add_argument('--data', type=str, required=True, default='ETTm1', help='dataset type')
parser.add_argument('--root_path', type=str, default='./data/ETT/', help='root path of the data file')
parser.add_argument('--data_path', type=str, default='ETTh1.csv', help='data file')
parser.add_argument('--features', type=str, default='M',
help='forecasting task, options:[M, S, MS]; M:multivariate predict multivariate, S:univariate predict univariate, MS:multivariate predict univariate')
parser.add_argument('--target', type=str, default='OT', help='target feature in S or MS task')
parser.add_argument('--freq', type=str, default='h',
help='freq for time features encoding, options:[s:secondly, t:minutely, h:hourly, d:daily, b:business days, w:weekly, m:monthly], you can also use more detailed freq like 15min or 3h')
parser.add_argument('--checkpoints', type=str, default='./checkpoints/', help='location of model checkpoints')
# TGTSF dataloader
parser.add_argument('--news_path', type=str, default='./data/news', help='path to pre-embed news or raw text news. Set to None will use zero embedding')
parser.add_argument('--des_path', type=str, default='./data/ETT/desp.csv', help='channel description, directory to the pre_embed or raw (with pre_embed set 0) set to None will use title of each column')
parser.add_argument('--info_overhead', type=int, default=0, help='number of days of information overhead')
parser.add_argument('--news_pre_embed', type=int, default=1, help='whether to use pre-embedded news')
parser.add_argument('--des_pre_embed', type=int, default=0, help='whether to use pre-embedded description')
parser.add_argument('--add_date', type=int, default=1, help='whether to add date to the description')
parser.add_argument('--text_encoder', type=str, default='paraphrase-MiniLM-L6-v2', help='text encoder for news and description')
parser.add_argument('--zero_news', action='store_true', default=False, help='zero embedding for news')
parser.add_argument('--zero_des', action='store_true', default=False, help='zero embedding for description')
# TGTSF setting
parser.add_argument('--text_dim', type=int, default=384, help='model dim of text encoder')
parser.add_argument('--cross_layers', type=int, default=3, help='cross attention layers')
parser.add_argument('--self_layers', type=int, default=3, help='self attention layers')
parser.add_argument('--finetune', type=int, default=0, help='self attention layers')
parser.add_argument('--out_attn_weights', type=int, default=0, help='whether output the mix attn weights')
parser.add_argument('--mixer_self_layers', type=int, default=0, help='decoder self attention layers')
parser.add_argument('--mixer_cross_layers', type=int, default=0, help='decoder self attention layers')
parser.add_argument('--mixer_type', type=str, default='cross', help='text encoder for news and description')
# forecasting task
parser.add_argument('--seq_len', type=int, default=96, help='input sequence length')
parser.add_argument('--label_len', type=int, default=48, help='start token length')
parser.add_argument('--pred_len', type=int, default=96, help='prediction sequence length')
# DLinear
#parser.add_argument('--individual', action='store_true', default=False, help='DLinear: a linear layer for each variate(channel) individually')
# PatchTST
parser.add_argument('--fc_dropout', type=float, default=0.05, help='fully connected dropout')
parser.add_argument('--head_dropout', type=float, default=0.0, help='head dropout')
parser.add_argument('--patch_len', type=int, default=16, help='patch length')
parser.add_argument('--stride', type=int, default=8, help='stride')
parser.add_argument('--padding_patch', default='end', help='None: None; end: padding on the end')
parser.add_argument('--revin', type=int, default=1, help='RevIN; True 1 False 0')
parser.add_argument('--affine', type=int, default=0, help='RevIN-affine; True 1 False 0')
parser.add_argument('--subtract_last', type=int, default=0, help='0: subtract mean; 1: subtract last')
parser.add_argument('--decomposition', type=int, default=0, help='decomposition; True 1 False 0')
parser.add_argument('--kernel_size', type=int, default=25, help='decomposition-kernel')
parser.add_argument('--individual', type=int, default=0, help='individual head; True 1 False 0')
parser.add_argument('--notrans', action='store_true', default=False, help='stop using transformer')
# Formers
parser.add_argument('--embed_type', type=int, default=0, help='0: default 1: value embedding + temporal embedding + positional embedding 2: value embedding + temporal embedding 3: value embedding + positional embedding 4: value embedding')
parser.add_argument('--enc_in', type=int, default=7, help='encoder input size') # DLinear with --individual, use this hyperparameter as the number of channels
parser.add_argument('--dec_in', type=int, default=7, help='decoder input size')
parser.add_argument('--c_out', type=int, default=7, help='output size')
parser.add_argument('--d_model', type=int, default=512, help='dimension of model')
parser.add_argument('--n_heads', type=int, default=8, help='num of heads')
parser.add_argument('--e_layers', type=int, default=2, help='num of encoder layers')
parser.add_argument('--d_layers', type=int, default=1, help='num of decoder layers')
parser.add_argument('--d_ff', type=int, default=2048, help='dimension of fcn')
parser.add_argument('--moving_avg', type=int, default=25, help='window size of moving average')
parser.add_argument('--factor', type=int, default=1, help='attn factor')
parser.add_argument('--distil', action='store_false',
help='whether to use distilling in encoder, using this argument means not using distilling',
default=True)
parser.add_argument('--dropout', type=float, default=0.05, help='dropout')
parser.add_argument('--embed', type=str, default='timeF',
help='time features encoding, options:[timeF, fixed, learned]')
parser.add_argument('--activation', type=str, default='gelu', help='activation')
parser.add_argument('--output_attention', action='store_true', help='whether to output attention in ecoder')
parser.add_argument('--do_predict', action='store_true', help='whether to predict unseen future data')
# optimization
parser.add_argument('--num_workers', type=int, default=2, help='data loader num workers')
parser.add_argument('--itr', type=int, default=2, help='experiments times')
parser.add_argument('--train_epochs', type=int, default=100, help='train epochs')
parser.add_argument('--batch_size', type=int, default=128, help='batch size of train input data')
parser.add_argument('--patience', type=int, default=100, help='early stopping patience')
parser.add_argument('--learning_rate', type=float, default=0.0001, help='optimizer learning rate')
parser.add_argument('--des', type=str, default='test', help='exp description')
parser.add_argument('--loss', type=str, default='mse', help='loss function')
parser.add_argument('--lradj', type=str, default='type3', help='adjust learning rate')
parser.add_argument('--pct_start', type=float, default=0.3, help='pct_start')
parser.add_argument('--use_amp', action='store_true', help='use automatic mixed precision training', default=False)
# GPU
parser.add_argument('--use_gpu', type=bool, default=True, help='use gpu')
parser.add_argument('--gpu', type=int, default=0, help='gpu')
parser.add_argument('--use_multi_gpu', action='store_true', help='use multiple gpus', default=False)
parser.add_argument('--devices', type=str, default='0,1,2,3', help='device ids of multile gpus')
parser.add_argument('--test_flop', action='store_true', default=False, help='See utils/tools for usage')
# TGTSF
# Augmentation
parser.add_argument('--aug_method', type=str, default='NA', help='f_mask: Frequency Masking, f_mix: Frequency Mixing')
parser.add_argument('--aug_rate', type=float, default=0.5, help='mask/mix rate')
parser.add_argument('--in_batch_augmentation', action='store_true', help='Augmentation in Batch (save memory cost)', default=False)
parser.add_argument('--in_dataset_augmentation', action='store_true', help='Augmentation in Dataset', default=False)
parser.add_argument('--data_size', type=float, default=1, help='size of dataset, i.e, 0.01 represents uses 1 persent samples in the dataset')
parser.add_argument('--aug_data_size', type=int, default=1, help='size of augmented data, i.e, 1 means double the size of dataset')
if __name__ == '__main__':
# try:
# torch.multiprocessing.set_start_method('spawn')
# except:
# pass
args = parser.parse_args()
# random seed
fix_seed = args.random_seed
random.seed(fix_seed)
torch.manual_seed(fix_seed)
np.random.seed(fix_seed)
args.use_gpu = True if torch.cuda.is_available() and args.use_gpu else False
if args.use_gpu and args.use_multi_gpu:
args.dvices = args.devices.replace(' ', '')
device_ids = args.devices.split(',')
args.device_ids = [int(id_) for id_ in device_ids]
args.gpu = args.device_ids[0]
print('Args in experiment:')
print(args)
Exp = Exp_Main
if args.is_training:
for ii in range(args.itr):
# setting record of experiments
setting = '{}_{}_{}_ft{}_sl{}_ll{}_pl{}_dm{}_nh{}_el{}_dl{}_df{}_fc{}_eb{}_dt{}_{}_{}'.format(
args.model_id,
args.model,
args.data,
args.features,
args.seq_len,
args.label_len,
args.pred_len,
args.d_model,
args.n_heads,
args.e_layers,
args.d_layers,
args.d_ff,
args.factor,
args.embed,
args.distil,
args.des,ii)
exp = Exp(args) # set experiments
print('>>>>>>>start training : {}>>>>>>>>>>>>>>>>>>>>>>>>>>'.format(setting))
exp.train(setting)
print('>>>>>>>testing : {}<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<'.format(setting))
exp.test(setting)
if args.do_predict:
print('>>>>>>>predicting : {}<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<'.format(setting))
exp.predict(setting, True)
torch.cuda.empty_cache()
else:
ii = 0
setting = '{}_{}_{}_ft{}_sl{}_ll{}_pl{}_dm{}_nh{}_el{}_dl{}_df{}_fc{}_eb{}_dt{}_{}_{}'.format(args.model_id,
args.model,
args.data,
args.features,
args.seq_len,
args.label_len,
args.pred_len,
args.d_model,
args.n_heads,
args.e_layers,
args.d_layers,
args.d_ff,
args.factor,
args.embed,
args.distil,
args.des, ii)
exp = Exp(args) # set experiments
print('>>>>>>>testing : {}<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<'.format(setting))
exp.test(setting, test=1)
torch.cuda.empty_cache()