-
Notifications
You must be signed in to change notification settings - Fork 10
/
README.yaml
43 lines (35 loc) · 2.13 KB
/
README.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
DATA:
CLASS_NAME_FILE: 'configs/namefiles/coco.names' # a relative path
AUGMENT: 1 # Gate of input data augmentation: 1 to augment, 0 otherwise
TRAIN:
IMG_DIR: 'data/INRIAPerson/Train/pos'
LAB_DIR: 'data/INRIAPerson/Train/labels'
DETECTOR:
NAME: ["Faster_RCNN"] # ["YOLOV3", "YOLOV3-TINY", "YOLOV4", "YOLOV4-TINY", "YOLOV5", "FASTER_RCNN", "SSD"] Case insensitive
# Model ensembling supported. Note that FasterRCNN & SSD are PyTorch models with 91 prediction classes(coco-91.names),
# while the others are with 80 prediction classes(coco.names). But class 'person' are in the same index 0, it means the current version
# supports to ensemble all models only when the target class is "person" (i.e. class index=0).
# Otherwise you can only to ensemble models with the same namefiles.
INPUT_SIZE: [416, 416]
BATCH_SIZE: 8 # batch size when training. BATCH_SIZE = const 1 when evaluating
CONF_THRESH: 0.5 # confidence thresh in NMS
IOU_THRESH: 0.45 # iou thresh in NMS
PERTURB:
GATE: null # ['shakedrop', null]
ATTACKER:
METHOD: "pgd" # choose the base attack algorithm from: ['bim', 'pgd', 'mim', 'optim', 'optim-sgd', 'optim-adam', 'optim-nesterov']
EPSILON: 255
MAX_EPOCH: 1000 # maximum epoches
ITER_STEP: 5 # Attack steps in every mini-batch
STEP_LR: 0.03 # update step size for every (mini-batch) step. e.g. FGSM: STEP_LR * grad.sign
tv_eta: 2.5
topx_conf: 1 # top-k confidence to calculate loss, default: 1.
ATTACK_CLASS: '0' # attack class index (corresponds to the above namesfile). Now we support to attack class id='0'(person) only.
LOSS_FUNC: "obj-tv" # choose LossFn from [null, 'descend-mse', 'ascend-mse', 'obj-tv']
LR_SCHEDULER: 'ALRS' # choose LR from ['plateau', 'ALRS', 'warmupALRS', 'cosine', 'ALRS_LowerTV']
PATCH:
WIDTH: 300 # Patch width
HEIGHT: 300 # Patch height
SCALE: 0.2 # patch scale when attaching patch on bbox (the SCALE is default as P9's scale)
INIT: "gray" # patch init, choose from ['gray', 'random', 'white']
TRANSFORM: ['jitter', 'median_pool', 'rotate'] # list a subset list from: ['jitter', 'median_pool', 'rotate', 'shift', 'cutout']