From 477e2274bbbada56b3241746805fd9565687faa8 Mon Sep 17 00:00:00 2001
From: parisa-zahedi
Date: Wed, 26 Jun 2024 16:50:22 +0200
Subject: [PATCH] fix black errors
---
.../classifier/data_preparation_dl.py | 1 +
.../classifier/data_preparation_svm.py | 1 +
.../hpo_dropout_weight.py | 3 ++-
.../hpo_epoch_batch.py | 1 +
.../hpo_learing_rate.py | 1 +
.../classifier/model/acoustic_model.py | 26 +++++++++----------
bioacoustics/classifier/model/cnn10_model.py | 2 +-
.../acoustic_features/features.py | 22 ++++++++--------
.../acoustic_features/featuresFunctions.py | 4 +--
.../wav_processing/chunk_wav/make_chunks.py | 1 +
.../wav_processing/condensation/extractor.py | 2 +-
11 files changed, 34 insertions(+), 30 deletions(-)
diff --git a/bioacoustics/classifier/data_preparation_dl.py b/bioacoustics/classifier/data_preparation_dl.py
index f733c8e..265f425 100755
--- a/bioacoustics/classifier/data_preparation_dl.py
+++ b/bioacoustics/classifier/data_preparation_dl.py
@@ -1,4 +1,5 @@
"""Script to prepare train and test data to feed into a model"""
+
import glob
import os
import numpy as np
diff --git a/bioacoustics/classifier/data_preparation_svm.py b/bioacoustics/classifier/data_preparation_svm.py
index 82ca780..1dd66b9 100755
--- a/bioacoustics/classifier/data_preparation_svm.py
+++ b/bioacoustics/classifier/data_preparation_svm.py
@@ -1,4 +1,5 @@
"""Data preparation for SVM classifier."""
+
import pandas as pd
import numpy as np
import glob
diff --git a/bioacoustics/classifier/hyperparameter_optimization/hpo_dropout_weight.py b/bioacoustics/classifier/hyperparameter_optimization/hpo_dropout_weight.py
index 6e9e94d..2bd7f67 100644
--- a/bioacoustics/classifier/hyperparameter_optimization/hpo_dropout_weight.py
+++ b/bioacoustics/classifier/hyperparameter_optimization/hpo_dropout_weight.py
@@ -1,4 +1,5 @@
""" Module that uses scikit-learn for grid search on the dropout rate """
+
import tensorflow as tf
from sklearn.model_selection import GridSearchCV
from scikeras.wrappers import KerasClassifier
@@ -62,6 +63,7 @@ def create_model(init_mode, dropout_rate, weight_constraint):
return model
+
if __name__ == "__main__":
parser = parse_arguments()
args = parser.parse_args()
@@ -125,4 +127,3 @@ def create_model(init_mode, dropout_rate, weight_constraint):
# save model
estimator = grid_result.best_estimator_
dump(estimator, args.output_dir + "best_estimator.joblib")
-
diff --git a/bioacoustics/classifier/hyperparameter_optimization/hpo_epoch_batch.py b/bioacoustics/classifier/hyperparameter_optimization/hpo_epoch_batch.py
index ec96024..af47411 100644
--- a/bioacoustics/classifier/hyperparameter_optimization/hpo_epoch_batch.py
+++ b/bioacoustics/classifier/hyperparameter_optimization/hpo_epoch_batch.py
@@ -1,4 +1,5 @@
""" Module that uses scikit-learn for grid search on the dropout rate """
+
import tensorflow as tf
from sklearn.model_selection import GridSearchCV
from scikeras.wrappers import KerasClassifier
diff --git a/bioacoustics/classifier/hyperparameter_optimization/hpo_learing_rate.py b/bioacoustics/classifier/hyperparameter_optimization/hpo_learing_rate.py
index 0434dc4..1351da8 100644
--- a/bioacoustics/classifier/hyperparameter_optimization/hpo_learing_rate.py
+++ b/bioacoustics/classifier/hyperparameter_optimization/hpo_learing_rate.py
@@ -1,4 +1,5 @@
""" Module that uses scikit-learn for grid search on the dropout rate """
+
import tensorflow as tf
from sklearn.model_selection import GridSearchCV
from scikeras.wrappers import KerasClassifier
diff --git a/bioacoustics/classifier/model/acoustic_model.py b/bioacoustics/classifier/model/acoustic_model.py
index 78f28b2..44136cd 100755
--- a/bioacoustics/classifier/model/acoustic_model.py
+++ b/bioacoustics/classifier/model/acoustic_model.py
@@ -1,4 +1,5 @@
"""Script of a base class for acoustic models"""
+
import os
from abc import ABC
import pickle
@@ -28,13 +29,13 @@ def _compile(self, learning_rate):
learning_rate: float
Learning rate for adam optimizer
"""
- optimizer = keras.optimizers.Adam(learning_rate=learning_rate) #, decay=0.001
+ optimizer = keras.optimizers.Adam(learning_rate=learning_rate) # , decay=0.001
# Compile the model
self.acoustic_model.compile(
- loss="binary_crossentropy", #"categorical_crossentropy"
- metrics=['accuracy'], #Recall()
- optimizer=optimizer
+ loss="binary_crossentropy", # "categorical_crossentropy"
+ metrics=["accuracy"], # Recall()
+ optimizer=optimizer,
)
# Display model architecture summary
@@ -151,7 +152,6 @@ def apply_model(
self._predict(x_test)
def predict_model(self, x_test, file_path, dl_model):
-
"""Load a trained model and make a prediction
Parameters
@@ -203,17 +203,17 @@ def plot_measures(self, history, file_path, title=""):
Title of the graph
"""
# summarize history for loss
- plt.plot(history.history['loss'])
- plt.plot(history.history['val_loss'])
- plt.title('model loss')
- plt.ylabel('loss')
- plt.xlabel('epoch')
- plt.legend(['train', 'val'], loc='upper left')
- fp_loss = os.path.join(file_path, 'loss.png')
+ plt.plot(history.history["loss"])
+ plt.plot(history.history["val_loss"])
+ plt.title("model loss")
+ plt.ylabel("loss")
+ plt.xlabel("epoch")
+ plt.legend(["train", "val"], loc="upper left")
+ fp_loss = os.path.join(file_path, "loss.png")
plt.savefig(fp_loss)
# convert the history.history dict to a pandas DataFrame:
hist_df = pd.DataFrame(history.history)
hist_csv_file = os.path.join(file_path, "history.csv")
- with open(hist_csv_file, mode='w') as f:
+ with open(hist_csv_file, mode="w") as f:
hist_df.to_csv(f)
diff --git a/bioacoustics/classifier/model/cnn10_model.py b/bioacoustics/classifier/model/cnn10_model.py
index c085034..e95241a 100755
--- a/bioacoustics/classifier/model/cnn10_model.py
+++ b/bioacoustics/classifier/model/cnn10_model.py
@@ -1,4 +1,5 @@
"""A class for acoustic model with 10 nn blocks"""
+
from acoustic_model import AcousticModel
import tensorflow as tf
@@ -59,7 +60,6 @@ def _make_cnn_model(self, init_mode, dropout_rate, weight_constraint):
input_shape=input_shape,
data_format=data_format,
padding="same",
-
kernel_regularizer=regularizers.l2(l=0.01),
kernel_initializer=init_mode,
kernel_constraint=MaxNorm(weight_constraint),
diff --git a/bioacoustics/feature_extraction/acoustic_features/features.py b/bioacoustics/feature_extraction/acoustic_features/features.py
index 618c92a..07839d1 100644
--- a/bioacoustics/feature_extraction/acoustic_features/features.py
+++ b/bioacoustics/feature_extraction/acoustic_features/features.py
@@ -178,9 +178,9 @@ def _readFeaturesFunctions(self):
featuresRefUnique[i] = str(i_feature)
# -----> Then extend to all domains
for i, domain in enumerate(self.domains):
- self.featuresFunctions[
- i * self.n_features : (i + 1) * self.n_features
- ] = featuresFunctionsUnique
+ self.featuresFunctions[i * self.n_features : (i + 1) * self.n_features] = (
+ featuresFunctionsUnique
+ )
self.featuresOptArguments[
i * self.n_features : (i + 1) * self.n_features
] = featuresOptArgumentsUnique
@@ -240,15 +240,15 @@ def _computation(self, signals, fs):
new_dictionary.update(
self.featuresOptArguments[i * self.n_features + j]
)
- self.featuresValues[
- i * self.n_features + j
- ] = self.featuresFunctions[i * self.n_features + j](
- signals[i], new_dictionary
+ self.featuresValues[i * self.n_features + j] = (
+ self.featuresFunctions[i * self.n_features + j](
+ signals[i], new_dictionary
+ )
)
# Otherwise directly compute feature value.
else:
- self.featuresValues[
- i * self.n_features + j
- ] = self.featuresFunctions[i * self.n_features + j](
- signals[i], self.intermValues
+ self.featuresValues[i * self.n_features + j] = (
+ self.featuresFunctions[i * self.n_features + j](
+ signals[i], self.intermValues
+ )
)
diff --git a/bioacoustics/feature_extraction/acoustic_features/featuresFunctions.py b/bioacoustics/feature_extraction/acoustic_features/featuresFunctions.py
index 11d443f..c27b3b2 100644
--- a/bioacoustics/feature_extraction/acoustic_features/featuresFunctions.py
+++ b/bioacoustics/feature_extraction/acoustic_features/featuresFunctions.py
@@ -241,9 +241,7 @@ def energy_kurtosis(signal, arg_dict):
E_kur = 0
else:
E_kur = (
- (1 / len(signal) / 2)
- * np.sum((E_u / len(signal) - E_bar) ** 4)
- / E_bar**4
+ (1 / len(signal) / 2) * np.sum((E_u / len(signal) - E_bar) ** 4) / E_bar**4
)
if np.isfinite(E_kur):
return E_kur
diff --git a/bioacoustics/wav_processing/chunk_wav/make_chunks.py b/bioacoustics/wav_processing/chunk_wav/make_chunks.py
index 484d3a7..d960f27 100755
--- a/bioacoustics/wav_processing/chunk_wav/make_chunks.py
+++ b/bioacoustics/wav_processing/chunk_wav/make_chunks.py
@@ -1,4 +1,5 @@
"""Script to make .wav files of the same length."""
+
import os
import glob
import argparse
diff --git a/bioacoustics/wav_processing/condensation/extractor.py b/bioacoustics/wav_processing/condensation/extractor.py
index 8bea461..183c43a 100644
--- a/bioacoustics/wav_processing/condensation/extractor.py
+++ b/bioacoustics/wav_processing/condensation/extractor.py
@@ -83,7 +83,7 @@ def detect_vocalizations(
# get all indexes of dbs rows of every band that we're
# interested in
- for (low, high) in freqs:
+ for low, high in freqs:
idx_low = (np.abs(f - low)).argmin() - 1
idx_low = 0 if idx_low < 0 else idx_low
idx_high = (np.abs(f - high)).argmin() + 1