-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathturtle_test.py
232 lines (169 loc) · 5.66 KB
/
turtle_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
import json
import math
import time
import turtle
from typing import List, Union
import numpy as np
from my_player import My_player
screen = turtle.Screen()
screen.bgcolor("grey")
screen.title("Turtle")
skk = turtle.Turtle()
with open("route_1.json", "r") as fp:
listObj = json.load(fp)
list_points = []
for key, value in listObj.items():
value = (value[0], value[1])
list_points.append(value)
maxs = list(map(max, zip(*list_points)))
mins = list(map(min, zip(*list_points)))
max_x = maxs[0]
max_y = maxs[1]
min_x = mins[0]
min_y = mins[1]
def minmax(x, min_, max_):
return (x - min_) / (max_ - min_)
list_points_norm = []
for point in list_points:
list_points_norm.append(
(minmax(point[0], min_x, max_x), minmax(point[1], min_y, max_y))
)
list_points = []
for value in list_points_norm:
value = (value[0] * 100, value[1] * 100)
list_points.append(value)
list_points = [np.array(l) for l in list_points]
def is_close_to_point(
target: np.array, my_pos: np.array, epsilon_distance: float
) -> bool:
"""Check if player is next to target with an epsilon distance error
Args:
target (np.array): Target position
my_pos (np.array): Player position
epsilon_distance (float): minimum distance to return True
Returns:
bool: True, is close to target otherwise False
"""
return distance(target, my_pos) <= epsilon_distance
def distance(target: np.array, my_pos: np.array) -> float:
"""Compute distance between 2 points
Args:
target (np.array): Target position
my_pos (np.array): Player position
Returns:
float: Distance between targent and player
"""
return math.sqrt(pow(target[0] - my_pos[0], 2) + pow(target[1] - my_pos[1], 2))
def get_index_closest_point(list_points: List[np.array], my_pos: np.array) -> int:
"""Get index of the closet point in a list of points
Args:
list_points (List[np.array]): List of points
my_pos (np.array): Player position
Returns:
int: Index of the closet position in the list
"""
closest_dist = distance(list_points[0], my_pos)
index_in_list = 0
for i, point in enumerate(list_points):
dist = distance(point, my_pos)
if dist < closest_dist:
closest_dist = dist
index_in_list = i
return index_in_list
def pid(
kp: float, ki: float, kd: float, dt: float, error: float, integral: float
) -> Union[float, float]:
"""PID controler
Args:
kp (float): proportional gain
ki (float): integral gain
kd (float): derivative gain
dt (float): time derivative
error (float): error at given time
integral (float): integral. Init to 0 at start and assign at pid call
Returns:
Union[float, float]: Error value, integral
"""
proportional_ = kp * error
integral = integral + (ki * error * dt)
derivative_ = -kd * error / dt
return proportional_ + integral + derivative_, integral
def distance_from_line(point1: np.array, point2: np.array, my_pos: np.array) -> float:
"""Get shortest distance from line.
Args:
point1 (np.array): point1 of line
point2 (np.array): point2 of line
my_pos (np.array): point of player
Returns:
float: distance
"""
return np.linalg.norm(np.cross(point2 - point1, point1 - my_pos)) / np.linalg.norm(
point2 - point1
)
def get_direction_from_errors(w: float) -> str:
"""Get direction to look at depending of error
Args:
w (float): error of system
Returns:
str: next key or direction to look at
"""
if w < 1:
return "left"
if w > 1:
return "right"
return "nothing"
def is_point_above_line(point1: np.array, point2: np.array, my_pos: np.array) -> bool:
"""Check if the position of the player is above or under a line
Args:
point1 (np.array): point1 of line
point2 (np.array): point2 of line
my_pos (np.array): point of player
Returns:
bool: True player is above line. False player is under line
"""
return np.cross(my_pos - point1, point2 - point1) < 0
def get_yaw(point1: np.array, point2: np.array) -> float:
dx = point1[0] - point2[0]
dy = point1[1] - point2[1]
return math.atan2(dy, dx)
def get_pos(skk: turtle.Turtle) -> np.array:
"""Convert pos of turtle to np array of 2 coords
Args:
skk (turtle.Turtle): My turtle
Returns:
np.array: coordinates of the turtle in np.array
"""
return np.array([skk.pos()[0], skk.pos()[1]])
skk.goto(0, 0)
my_player = My_player(*get_pos(skk))
print(my_player)
# init
skk.goto(0, 0)
my_pos = get_pos(skk)
index = 0 # get_index_closest_point(list_points, my_pos)
integral = 0.0
start_time = time.time()
ii = 0
while index < len(list_points):
previous_target = list_points[index - 1]
target = list_points[index]
dist = distance(target, my_pos)
while not is_close_to_point(target, my_pos, 1):
dt = time.time() - start_time
print(f"\nTrying to reach point {target} at index {index}")
diff = target - my_pos
dist = distance(target, my_pos)
degree = my_player.get_target_orientation(target)
diff_angle = my_player.diff_angle(degree)
skk._rotate(diff_angle)
print(f"Making {diff_angle=}")
skk.forward(1)
# time.sleep(1)
# end loop, refresh pos and dist
my_pos = get_pos(skk)
dist = distance(target, my_pos)
my_player.update(my_pos[0], my_pos[1])
print(f"New pos {my_pos}. Dist from point {dist}")
print(f"Reached point {target} at index {index}")
index = index + 1
turtle.done()