forked from zylon-ai/private-gpt
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ingest.py
executable file
·185 lines (159 loc) · 7 KB
/
ingest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
#!/usr/bin/env python3
import os
import glob
from typing import List
from dotenv import load_dotenv
from multiprocessing import Pool
from tqdm import tqdm
from langchain.document_loaders import (
CSVLoader,
EverNoteLoader,
PyMuPDFLoader,
TextLoader,
UnstructuredEmailLoader,
UnstructuredEPubLoader,
UnstructuredHTMLLoader,
UnstructuredMarkdownLoader,
UnstructuredODTLoader,
UnstructuredPowerPointLoader,
UnstructuredWordDocumentLoader,
)
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import Chroma
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.docstore.document import Document
if not load_dotenv():
print("Could not load .env file or it is empty. Please check if it exists and is readable.")
exit(1)
from constants import CHROMA_SETTINGS
import chromadb
from chromadb.api.segment import API
# Load environment variables
persist_directory = os.environ.get('PERSIST_DIRECTORY')
source_directory = os.environ.get('SOURCE_DIRECTORY', 'source_documents')
embeddings_model_name = os.environ.get('EMBEDDINGS_MODEL_NAME')
chunk_size = 500
chunk_overlap = 50
# Custom document loaders
class MyElmLoader(UnstructuredEmailLoader):
"""Wrapper to fallback to text/plain when default does not work"""
def load(self) -> List[Document]:
"""Wrapper adding fallback for elm without html"""
try:
try:
doc = UnstructuredEmailLoader.load(self)
except ValueError as e:
if 'text/html content not found in email' in str(e):
# Try plain text
self.unstructured_kwargs["content_source"]="text/plain"
doc = UnstructuredEmailLoader.load(self)
else:
raise
except Exception as e:
# Add file_path to exception message
raise type(e)(f"{self.file_path}: {e}") from e
return doc
# Map file extensions to document loaders and their arguments
LOADER_MAPPING = {
".csv": (CSVLoader, {}),
# ".docx": (Docx2txtLoader, {}),
".doc": (UnstructuredWordDocumentLoader, {}),
".docx": (UnstructuredWordDocumentLoader, {}),
".enex": (EverNoteLoader, {}),
".eml": (MyElmLoader, {}),
".epub": (UnstructuredEPubLoader, {}),
".html": (UnstructuredHTMLLoader, {}),
".md": (UnstructuredMarkdownLoader, {}),
".odt": (UnstructuredODTLoader, {}),
".pdf": (PyMuPDFLoader, {}),
".ppt": (UnstructuredPowerPointLoader, {}),
".pptx": (UnstructuredPowerPointLoader, {}),
".txt": (TextLoader, {"encoding": "utf8"}),
# Add more mappings for other file extensions and loaders as needed
}
def load_single_document(file_path: str) -> List[Document]:
ext = "." + file_path.rsplit(".", 1)[-1].lower()
if ext in LOADER_MAPPING:
loader_class, loader_args = LOADER_MAPPING[ext]
loader = loader_class(file_path, **loader_args)
return loader.load()
raise ValueError(f"Unsupported file extension '{ext}'")
def load_documents(source_dir: str, ignored_files: List[str] = []) -> List[Document]:
"""
Loads all documents from the source documents directory, ignoring specified files
"""
all_files = []
for ext in LOADER_MAPPING:
all_files.extend(
glob.glob(os.path.join(source_dir, f"**/*{ext.lower()}"), recursive=True)
)
all_files.extend(
glob.glob(os.path.join(source_dir, f"**/*{ext.upper()}"), recursive=True)
)
filtered_files = [file_path for file_path in all_files if file_path not in ignored_files]
with Pool(processes=os.cpu_count()) as pool:
results = []
with tqdm(total=len(filtered_files), desc='Loading new documents', ncols=80) as pbar:
for i, docs in enumerate(pool.imap_unordered(load_single_document, filtered_files)):
results.extend(docs)
pbar.update()
return results
def process_documents(ignored_files: List[str] = []) -> List[Document]:
"""
Load documents and split in chunks
"""
print(f"Loading documents from {source_directory}")
documents = load_documents(source_directory, ignored_files)
if not documents:
print("No new documents to load")
exit(0)
print(f"Loaded {len(documents)} new documents from {source_directory}")
text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
documents = text_splitter.split_documents(documents)
print(f"Split into {len(documents)} chunks of text (max. {chunk_size} tokens each)")
return documents
def batch_chromadb_insertions(chroma_client: API, documents: List[Document]) -> List[Document]:
"""
Split the total documents to be inserted into batches of documents that the local chroma client can process
"""
# Get max batch size.
max_batch_size = chroma_client.max_batch_size
for i in range(0, len(documents), max_batch_size):
yield documents[i:i + max_batch_size]
def does_vectorstore_exist(persist_directory: str, embeddings: HuggingFaceEmbeddings) -> bool:
"""
Checks if vectorstore exists
"""
db = Chroma(persist_directory=persist_directory, embedding_function=embeddings)
if not db.get()['documents']:
return False
return True
def main():
# Create embeddings
embeddings = HuggingFaceEmbeddings(model_name=embeddings_model_name)
# Chroma client
chroma_client = chromadb.PersistentClient(settings=CHROMA_SETTINGS , path=persist_directory)
if does_vectorstore_exist(persist_directory, embeddings):
# Update and store locally vectorstore
print(f"Appending to existing vectorstore at {persist_directory}")
db = Chroma(persist_directory=persist_directory, embedding_function=embeddings, client_settings=CHROMA_SETTINGS, client=chroma_client)
collection = db.get()
documents = process_documents([metadata['source'] for metadata in collection['metadatas']])
print(f"Creating embeddings. May take some minutes...")
for batched_chromadb_insertion in batch_chromadb_insertions(chroma_client, documents):
db.add_documents(batched_chromadb_insertion)
else:
# Create and store locally vectorstore
print("Creating new vectorstore")
documents = process_documents()
print(f"Creating embeddings. May take some minutes...")
# Create the db with the first batch of documents to insert
batched_chromadb_insertions = batch_chromadb_insertions(chroma_client, documents)
first_insertion = next(batched_chromadb_insertions)
db = Chroma.from_documents(first_insertion, embeddings, persist_directory=persist_directory, client_settings=CHROMA_SETTINGS, client=chroma_client)
# Add the rest of batches of documents
for batched_chromadb_insertion in batched_chromadb_insertions:
db.add_documents(batched_chromadb_insertion)
print(f"Ingestion complete! You can now run privateGPT.py to query your documents")
if __name__ == "__main__":
main()