diff --git a/ci/doc_requirements.txt b/ci/doc_requirements.txt index c933d75603..c51eb17063 100644 --- a/ci/doc_requirements.txt +++ b/ci/doc_requirements.txt @@ -4,5 +4,5 @@ sphinx-design==0.6.1 sphinx-gallery==0.17.1 myst-parser==4.0.0 netCDF4==1.7.1 -geopandas==0.14.4 +geopandas==1.0.1 rtree==1.3.0 diff --git a/examples/plots/nhc_wind_probabilities.py b/examples/plots/nhc_wind_probabilities.py index 667ae87453..653d357adc 100644 --- a/examples/plots/nhc_wind_probabilities.py +++ b/examples/plots/nhc_wind_probabilities.py @@ -57,7 +57,7 @@ # cities we selected above. Geopandas provides a spatial join method, which merges the two # GeoDataFrames and can tell us which wind speed probability polygon each of our city points # lies within. That information is stored in the 'PERCENTAGE' column below. -cities = geopandas.sjoin(cities, wind_data, how='left', op='within') +cities = geopandas.sjoin(cities, wind_data, how='left', predicate='within') cities ###########################