-
Notifications
You must be signed in to change notification settings - Fork 2.5k
/
SentenceTransformer.py
912 lines (735 loc) · 42.9 KB
/
SentenceTransformer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
import json
import logging
import os
import shutil
import stat
from collections import OrderedDict
from typing import List, Dict, Tuple, Iterable, Type, Union, Callable, Optional
import requests
import numpy as np
from numpy import ndarray
import transformers
from huggingface_hub import HfApi, HfFolder, Repository, hf_hub_url, cached_download
import torch
from torch import nn, Tensor, device
from torch.optim import Optimizer
from torch.utils.data import DataLoader
import torch.multiprocessing as mp
from tqdm.autonotebook import trange
import math
import queue
import tempfile
from distutils.dir_util import copy_tree
from . import __MODEL_HUB_ORGANIZATION__
from .evaluation import SentenceEvaluator
from .util import import_from_string, batch_to_device, fullname, snapshot_download
from .models import Transformer, Pooling, Dense
from .model_card_templates import ModelCardTemplate
from . import __version__
logger = logging.getLogger(__name__)
class SentenceTransformer(nn.Sequential):
"""
Loads or create a SentenceTransformer model, that can be used to map sentences / text to embeddings.
:param model_name_or_path: If it is a filepath on disc, it loads the model from that path. If it is not a path, it first tries to download a pre-trained SentenceTransformer model. If that fails, tries to construct a model from Huggingface models repository with that name.
:param modules: This parameter can be used to create custom SentenceTransformer models from scratch.
:param device: Device (like 'cuda' / 'cpu') that should be used for computation. If None, checks if a GPU can be used.
:param cache_folder: Path to store models
:param use_auth_token: HuggingFace authentication token to download private models.
"""
def __init__(self, model_name_or_path: Optional[str] = None,
modules: Optional[Iterable[nn.Module]] = None,
device: Optional[str] = None,
cache_folder: Optional[str] = None,
use_auth_token: Union[bool, str, None] = None
):
self._model_card_vars = {}
self._model_card_text = None
self._model_config = {}
if cache_folder is None:
cache_folder = os.getenv('SENTENCE_TRANSFORMERS_HOME')
if cache_folder is None:
try:
from torch.hub import _get_torch_home
torch_cache_home = _get_torch_home()
except ImportError:
torch_cache_home = os.path.expanduser(os.getenv('TORCH_HOME', os.path.join(os.getenv('XDG_CACHE_HOME', '~/.cache'), 'torch')))
cache_folder = os.path.join(torch_cache_home, 'sentence_transformers')
if model_name_or_path is not None and model_name_or_path != "":
logger.info("Load pretrained SentenceTransformer: {}".format(model_name_or_path))
#Old models that don't belong to any organization
basic_transformer_models = ['albert-base-v1', 'albert-base-v2', 'albert-large-v1', 'albert-large-v2', 'albert-xlarge-v1', 'albert-xlarge-v2', 'albert-xxlarge-v1', 'albert-xxlarge-v2', 'bert-base-cased-finetuned-mrpc', 'bert-base-cased', 'bert-base-chinese', 'bert-base-german-cased', 'bert-base-german-dbmdz-cased', 'bert-base-german-dbmdz-uncased', 'bert-base-multilingual-cased', 'bert-base-multilingual-uncased', 'bert-base-uncased', 'bert-large-cased-whole-word-masking-finetuned-squad', 'bert-large-cased-whole-word-masking', 'bert-large-cased', 'bert-large-uncased-whole-word-masking-finetuned-squad', 'bert-large-uncased-whole-word-masking', 'bert-large-uncased', 'camembert-base', 'ctrl', 'distilbert-base-cased-distilled-squad', 'distilbert-base-cased', 'distilbert-base-german-cased', 'distilbert-base-multilingual-cased', 'distilbert-base-uncased-distilled-squad', 'distilbert-base-uncased-finetuned-sst-2-english', 'distilbert-base-uncased', 'distilgpt2', 'distilroberta-base', 'gpt2-large', 'gpt2-medium', 'gpt2-xl', 'gpt2', 'openai-gpt', 'roberta-base-openai-detector', 'roberta-base', 'roberta-large-mnli', 'roberta-large-openai-detector', 'roberta-large', 't5-11b', 't5-3b', 't5-base', 't5-large', 't5-small', 'transfo-xl-wt103', 'xlm-clm-ende-1024', 'xlm-clm-enfr-1024', 'xlm-mlm-100-1280', 'xlm-mlm-17-1280', 'xlm-mlm-en-2048', 'xlm-mlm-ende-1024', 'xlm-mlm-enfr-1024', 'xlm-mlm-enro-1024', 'xlm-mlm-tlm-xnli15-1024', 'xlm-mlm-xnli15-1024', 'xlm-roberta-base', 'xlm-roberta-large-finetuned-conll02-dutch', 'xlm-roberta-large-finetuned-conll02-spanish', 'xlm-roberta-large-finetuned-conll03-english', 'xlm-roberta-large-finetuned-conll03-german', 'xlm-roberta-large', 'xlnet-base-cased', 'xlnet-large-cased']
if os.path.exists(model_name_or_path):
#Load from path
model_path = model_name_or_path
else:
#Not a path, load from hub
if '\\' in model_name_or_path or model_name_or_path.count('/') > 1:
raise ValueError("Path {} not found".format(model_name_or_path))
if '/' not in model_name_or_path and model_name_or_path.lower() not in basic_transformer_models:
# A model from sentence-transformers
model_name_or_path = __MODEL_HUB_ORGANIZATION__ + "/" + model_name_or_path
model_path = os.path.join(cache_folder, model_name_or_path.replace("/", "_"))
if not os.path.exists(os.path.join(model_path, 'modules.json')):
# Download from hub with caching
snapshot_download(model_name_or_path,
cache_dir=cache_folder,
library_name='sentence-transformers',
library_version=__version__,
ignore_files=['flax_model.msgpack', 'rust_model.ot', 'tf_model.h5'],
use_auth_token=use_auth_token)
if os.path.exists(os.path.join(model_path, 'modules.json')): #Load as SentenceTransformer model
modules = self._load_sbert_model(model_path)
else: #Load with AutoModel
modules = self._load_auto_model(model_path)
if modules is not None and not isinstance(modules, OrderedDict):
modules = OrderedDict([(str(idx), module) for idx, module in enumerate(modules)])
super().__init__(modules)
if device is None:
device = "cuda" if torch.cuda.is_available() else "cpu"
logger.info("Use pytorch device: {}".format(device))
self._target_device = torch.device(device)
def encode(self, sentences: Union[str, List[str]],
batch_size: int = 32,
show_progress_bar: bool = None,
output_value: str = 'sentence_embedding',
convert_to_numpy: bool = True,
convert_to_tensor: bool = False,
device: str = None,
normalize_embeddings: bool = False) -> Union[List[Tensor], ndarray, Tensor]:
"""
Computes sentence embeddings
:param sentences: the sentences to embed
:param batch_size: the batch size used for the computation
:param show_progress_bar: Output a progress bar when encode sentences
:param output_value: Default sentence_embedding, to get sentence embeddings. Can be set to token_embeddings to get wordpiece token embeddings. Set to None, to get all output values
:param convert_to_numpy: If true, the output is a list of numpy vectors. Else, it is a list of pytorch tensors.
:param convert_to_tensor: If true, you get one large tensor as return. Overwrites any setting from convert_to_numpy
:param device: Which torch.device to use for the computation
:param normalize_embeddings: If set to true, returned vectors will have length 1. In that case, the faster dot-product (util.dot_score) instead of cosine similarity can be used.
:return:
By default, a list of tensors is returned. If convert_to_tensor, a stacked tensor is returned. If convert_to_numpy, a numpy matrix is returned.
"""
self.eval()
if show_progress_bar is None:
show_progress_bar = (logger.getEffectiveLevel()==logging.INFO or logger.getEffectiveLevel()==logging.DEBUG)
if convert_to_tensor:
convert_to_numpy = False
if output_value != 'sentence_embedding':
convert_to_tensor = False
convert_to_numpy = False
input_was_string = False
if isinstance(sentences, str) or not hasattr(sentences, '__len__'): #Cast an individual sentence to a list with length 1
sentences = [sentences]
input_was_string = True
if device is None:
device = self._target_device
self.to(device)
all_embeddings = []
length_sorted_idx = np.argsort([-self._text_length(sen) for sen in sentences])
sentences_sorted = [sentences[idx] for idx in length_sorted_idx]
for start_index in trange(0, len(sentences), batch_size, desc="Batches", disable=not show_progress_bar):
sentences_batch = sentences_sorted[start_index:start_index+batch_size]
features = self.tokenize(sentences_batch)
features = batch_to_device(features, device)
with torch.no_grad():
out_features = self.forward(features)
if output_value == 'token_embeddings':
embeddings = []
for token_emb, attention in zip(out_features[output_value], out_features['attention_mask']):
last_mask_id = len(attention)-1
while last_mask_id > 0 and attention[last_mask_id].item() == 0:
last_mask_id -= 1
embeddings.append(token_emb[0:last_mask_id+1])
elif output_value is None: #Return all outputs
embeddings = []
for sent_idx in range(len(out_features['sentence_embedding'])):
row = {name: out_features[name][sent_idx] for name in out_features}
embeddings.append(row)
else: #Sentence embeddings
embeddings = out_features[output_value]
embeddings = embeddings.detach()
if normalize_embeddings:
embeddings = torch.nn.functional.normalize(embeddings, p=2, dim=1)
# fixes for #522 and #487 to avoid oom problems on gpu with large datasets
if convert_to_numpy:
embeddings = embeddings.cpu()
all_embeddings.extend(embeddings)
all_embeddings = [all_embeddings[idx] for idx in np.argsort(length_sorted_idx)]
if convert_to_tensor:
all_embeddings = torch.stack(all_embeddings)
elif convert_to_numpy:
all_embeddings = np.asarray([emb.numpy() for emb in all_embeddings])
if input_was_string:
all_embeddings = all_embeddings[0]
return all_embeddings
def start_multi_process_pool(self, target_devices: List[str] = None):
"""
Starts multi process to process the encoding with several, independent processes.
This method is recommended if you want to encode on multiple GPUs. It is advised
to start only one process per GPU. This method works together with encode_multi_process
:param target_devices: PyTorch target devices, e.g. cuda:0, cuda:1... If None, all available CUDA devices will be used
:return: Returns a dict with the target processes, an input queue and and output queue.
"""
if target_devices is None:
if torch.cuda.is_available():
target_devices = ['cuda:{}'.format(i) for i in range(torch.cuda.device_count())]
else:
logger.info("CUDA is not available. Start 4 CPU worker")
target_devices = ['cpu']*4
logger.info("Start multi-process pool on devices: {}".format(', '.join(map(str, target_devices))))
ctx = mp.get_context('spawn')
input_queue = ctx.Queue()
output_queue = ctx.Queue()
processes = []
for cuda_id in target_devices:
p = ctx.Process(target=SentenceTransformer._encode_multi_process_worker, args=(cuda_id, self, input_queue, output_queue), daemon=True)
p.start()
processes.append(p)
return {'input': input_queue, 'output': output_queue, 'processes': processes}
@staticmethod
def stop_multi_process_pool(pool):
"""
Stops all processes started with start_multi_process_pool
"""
for p in pool['processes']:
p.terminate()
for p in pool['processes']:
p.join()
p.close()
pool['input'].close()
pool['output'].close()
def encode_multi_process(self, sentences: List[str], pool: Dict[str, object], batch_size: int = 32, chunk_size: int = None):
"""
This method allows to run encode() on multiple GPUs. The sentences are chunked into smaller packages
and sent to individual processes, which encode these on the different GPUs. This method is only suitable
for encoding large sets of sentences
:param sentences: List of sentences
:param pool: A pool of workers started with SentenceTransformer.start_multi_process_pool
:param batch_size: Encode sentences with batch size
:param chunk_size: Sentences are chunked and sent to the individual processes. If none, it determine a sensible size.
:return: Numpy matrix with all embeddings
"""
if chunk_size is None:
chunk_size = min(math.ceil(len(sentences) / len(pool["processes"]) / 10), 5000)
logger.debug(f"Chunk data into {math.ceil(len(sentences) / chunk_size)} packages of size {chunk_size}")
input_queue = pool['input']
last_chunk_id = 0
chunk = []
for sentence in sentences:
chunk.append(sentence)
if len(chunk) >= chunk_size:
input_queue.put([last_chunk_id, batch_size, chunk])
last_chunk_id += 1
chunk = []
if len(chunk) > 0:
input_queue.put([last_chunk_id, batch_size, chunk])
last_chunk_id += 1
output_queue = pool['output']
results_list = sorted([output_queue.get() for _ in range(last_chunk_id)], key=lambda x: x[0])
embeddings = np.concatenate([result[1] for result in results_list])
return embeddings
@staticmethod
def _encode_multi_process_worker(target_device: str, model, input_queue, results_queue):
"""
Internal working process to encode sentences in multi-process setup
"""
while True:
try:
id, batch_size, sentences = input_queue.get()
embeddings = model.encode(sentences, device=target_device, show_progress_bar=False, convert_to_numpy=True, batch_size=batch_size)
results_queue.put([id, embeddings])
except queue.Empty:
break
def get_max_seq_length(self):
"""
Returns the maximal sequence length for input the model accepts. Longer inputs will be truncated
"""
if hasattr(self._first_module(), 'max_seq_length'):
return self._first_module().max_seq_length
return None
def tokenize(self, texts: Union[List[str], List[Dict], List[Tuple[str, str]]]):
"""
Tokenizes the texts
"""
return self._first_module().tokenize(texts)
def get_sentence_features(self, *features):
return self._first_module().get_sentence_features(*features)
def get_sentence_embedding_dimension(self):
for mod in reversed(self._modules.values()):
sent_embedding_dim_method = getattr(mod, "get_sentence_embedding_dimension", None)
if callable(sent_embedding_dim_method):
return sent_embedding_dim_method()
return None
def _first_module(self):
"""Returns the first module of this sequential embedder"""
return self._modules[next(iter(self._modules))]
def _last_module(self):
"""Returns the last module of this sequential embedder"""
return self._modules[next(reversed(self._modules))]
def save(self, path: str, model_name: Optional[str] = None, create_model_card: bool = True, train_datasets: Optional[List[str]] = None):
"""
Saves all elements for this seq. sentence embedder into different sub-folders
:param path: Path on disc
:param model_name: Optional model name
:param create_model_card: If True, create a README.md with basic information about this model
:param train_datasets: Optional list with the names of the datasets used to to train the model
"""
if path is None:
return
os.makedirs(path, exist_ok=True)
logger.info("Save model to {}".format(path))
modules_config = []
#Save some model info
if '__version__' not in self._model_config:
self._model_config['__version__'] = {
'sentence_transformers': __version__,
'transformers': transformers.__version__,
'pytorch': torch.__version__,
}
with open(os.path.join(path, 'config_sentence_transformers.json'), 'w') as fOut:
json.dump(self._model_config, fOut, indent=2)
#Save modules
for idx, name in enumerate(self._modules):
module = self._modules[name]
if idx == 0 and isinstance(module, Transformer): #Save transformer model in the main folder
model_path = path + "/"
else:
model_path = os.path.join(path, str(idx)+"_"+type(module).__name__)
os.makedirs(model_path, exist_ok=True)
module.save(model_path)
modules_config.append({'idx': idx, 'name': name, 'path': os.path.basename(model_path), 'type': type(module).__module__})
with open(os.path.join(path, 'modules.json'), 'w') as fOut:
json.dump(modules_config, fOut, indent=2)
# Create model card
if create_model_card:
self._create_model_card(path, model_name, train_datasets)
def _create_model_card(self, path: str, model_name: Optional[str] = None, train_datasets: Optional[List[str]] = None):
"""
Create an automatic model and stores it in path
"""
if self._model_card_text is not None and len(self._model_card_text) > 0:
model_card = self._model_card_text
else:
tags = ModelCardTemplate.__TAGS__.copy()
model_card = ModelCardTemplate.__MODEL_CARD__
if len(self._modules) == 2 and isinstance(self._first_module(), Transformer) and isinstance(self._last_module(), Pooling) and self._last_module().get_pooling_mode_str() in ['cls', 'max', 'mean']:
pooling_module = self._last_module()
pooling_mode = pooling_module.get_pooling_mode_str()
model_card = model_card.replace("{USAGE_TRANSFORMERS_SECTION}", ModelCardTemplate.__USAGE_TRANSFORMERS__)
pooling_fct_name, pooling_fct = ModelCardTemplate.model_card_get_pooling_function(pooling_mode)
model_card = model_card.replace("{POOLING_FUNCTION}", pooling_fct).replace("{POOLING_FUNCTION_NAME}", pooling_fct_name).replace("{POOLING_MODE}", pooling_mode)
tags.append('transformers')
# Print full model
model_card = model_card.replace("{FULL_MODEL_STR}", str(self))
# Add tags
model_card = model_card.replace("{TAGS}", "\n".join(["- "+t for t in tags]))
datasets_str = ""
if train_datasets is not None:
datasets_str = "datasets:\n"+"\n".join(["- " + d for d in train_datasets])
model_card = model_card.replace("{DATASETS}", datasets_str)
# Add dim info
self._model_card_vars["{NUM_DIMENSIONS}"] = self.get_sentence_embedding_dimension()
# Replace vars we created while using the model
for name, value in self._model_card_vars.items():
model_card = model_card.replace(name, str(value))
# Replace remaining vars with default values
for name, value in ModelCardTemplate.__DEFAULT_VARS__.items():
model_card = model_card.replace(name, str(value))
if model_name is not None:
model_card = model_card.replace("{MODEL_NAME}", model_name.strip())
with open(os.path.join(path, "README.md"), "w", encoding='utf8') as fOut:
fOut.write(model_card.strip())
def save_to_hub(self,
repo_name: str,
organization: Optional[str] = None,
private: Optional[bool] = None,
commit_message: str = "Add new SentenceTransformer model.",
local_model_path: Optional[str] = None,
exist_ok: bool = False,
replace_model_card: bool = False,
train_datasets: Optional[List[str]] = None):
"""
Uploads all elements of this Sentence Transformer to a new HuggingFace Hub repository.
:param repo_name: Repository name for your model in the Hub.
:param organization: Organization in which you want to push your model or tokenizer (you must be a member of this organization).
:param private: Set to true, for hosting a prive model
:param commit_message: Message to commit while pushing.
:param local_model_path: Path of the model locally. If set, this file path will be uploaded. Otherwise, the current model will be uploaded
:param exist_ok: If true, saving to an existing repository is OK. If false, saving only to a new repository is possible
:param replace_model_card: If true, replace an existing model card in the hub with the automatically created model card
:param train_datasets: Datasets used to train the model. If set, the datasets will be added to the model card in the Hub.
:return: The url of the commit of your model in the given repository.
"""
token = HfFolder.get_token()
if token is None:
raise ValueError("You must login to the Hugging Face hub on this computer by typing `transformers-cli login`.")
if '/' in repo_name:
splits = repo_name.split('/', maxsplit=1)
if organization is None or organization == splits[0]:
organization = splits[0]
repo_name = splits[1]
else:
raise ValueError("You passed and invalid repository name: {}.".format(repo_name))
endpoint = "https://huggingface.co"
repo_url = HfApi(endpoint=endpoint).create_repo(
token,
repo_name,
organization=organization,
private=private,
repo_type=None,
exist_ok=exist_ok,
)
full_model_name = repo_url[len(endpoint)+1:].strip("/")
with tempfile.TemporaryDirectory() as tmp_dir:
# First create the repo (and clone its content if it's nonempty).
logger.info("Create repository and clone it if it exists")
repo = Repository(tmp_dir, clone_from=repo_url)
# If user provides local files, copy them.
if local_model_path:
copy_tree(local_model_path, tmp_dir)
else: # Else, save model directly into local repo.
create_model_card = replace_model_card or not os.path.exists(os.path.join(tmp_dir, 'README.md'))
self.save(tmp_dir, model_name=full_model_name, create_model_card=create_model_card, train_datasets=train_datasets)
#Find files larger 5M and track with git-lfs
large_files = []
for root, dirs, files in os.walk(tmp_dir):
for filename in files:
file_path = os.path.join(root, filename)
rel_path = os.path.relpath(file_path, tmp_dir)
if os.path.getsize(file_path) > (5 * 1024 * 1024):
large_files.append(rel_path)
if len(large_files) > 0:
logger.info("Track files with git lfs: {}".format(", ".join(large_files)))
repo.lfs_track(large_files)
logger.info("Push model to the hub. This might take a while")
push_return = repo.push_to_hub(commit_message=commit_message)
def on_rm_error(func, path, exc_info):
# path contains the path of the file that couldn't be removed
# let's just assume that it's read-only and unlink it.
try:
os.chmod(path, stat.S_IWRITE)
os.unlink(path)
except:
pass
# Remove .git folder. On Windows, the .git folder might be read-only and cannot be deleted
# Hence, try to set write permissions on error
try:
for f in os.listdir(tmp_dir):
shutil.rmtree(os.path.join(tmp_dir, f), onerror=on_rm_error)
except Exception as e:
logger.warning("Error when deleting temp folder: {}".format(str(e)))
pass
return push_return
def smart_batching_collate(self, batch):
"""
Transforms a batch from a SmartBatchingDataset to a batch of tensors for the model
Here, batch is a list of tuples: [(tokens, label), ...]
:param batch:
a batch from a SmartBatchingDataset
:return:
a batch of tensors for the model
"""
num_texts = len(batch[0].texts)
texts = [[] for _ in range(num_texts)]
labels = []
for example in batch:
for idx, text in enumerate(example.texts):
texts[idx].append(text)
labels.append(example.label)
labels = torch.tensor(labels)
sentence_features = []
for idx in range(num_texts):
tokenized = self.tokenize(texts[idx])
sentence_features.append(tokenized)
return sentence_features, labels
def _text_length(self, text: Union[List[int], List[List[int]]]):
"""
Help function to get the length for the input text. Text can be either
a list of ints (which means a single text as input), or a tuple of list of ints
(representing several text inputs to the model).
"""
if isinstance(text, dict): #{key: value} case
return len(next(iter(text.values())))
elif not hasattr(text, '__len__'): #Object has no len() method
return 1
elif len(text) == 0 or isinstance(text[0], int): #Empty string or list of ints
return len(text)
else:
return sum([len(t) for t in text]) #Sum of length of individual strings
def fit(self,
train_objectives: Iterable[Tuple[DataLoader, nn.Module]],
evaluator: SentenceEvaluator = None,
epochs: int = 1,
steps_per_epoch = None,
scheduler: str = 'WarmupLinear',
warmup_steps: int = 10000,
optimizer_class: Type[Optimizer] = torch.optim.AdamW,
optimizer_params : Dict[str, object]= {'lr': 2e-5},
weight_decay: float = 0.01,
evaluation_steps: int = 0,
output_path: str = None,
save_best_model: bool = True,
max_grad_norm: float = 1,
use_amp: bool = False,
callback: Callable[[float, int, int], None] = None,
show_progress_bar: bool = True,
checkpoint_path: str = None,
checkpoint_save_steps: int = 500,
checkpoint_save_total_limit: int = 0
):
"""
Train the model with the given training objective
Each training objective is sampled in turn for one batch.
We sample only as many batches from each objective as there are in the smallest one
to make sure of equal training with each dataset.
:param train_objectives: Tuples of (DataLoader, LossFunction). Pass more than one for multi-task learning
:param evaluator: An evaluator (sentence_transformers.evaluation) evaluates the model performance during training on held-out dev data. It is used to determine the best model that is saved to disc.
:param epochs: Number of epochs for training
:param steps_per_epoch: Number of training steps per epoch. If set to None (default), one epoch is equal the DataLoader size from train_objectives.
:param scheduler: Learning rate scheduler. Available schedulers: constantlr, warmupconstant, warmuplinear, warmupcosine, warmupcosinewithhardrestarts
:param warmup_steps: Behavior depends on the scheduler. For WarmupLinear (default), the learning rate is increased from o up to the maximal learning rate. After these many training steps, the learning rate is decreased linearly back to zero.
:param optimizer_class: Optimizer
:param optimizer_params: Optimizer parameters
:param weight_decay: Weight decay for model parameters
:param evaluation_steps: If > 0, evaluate the model using evaluator after each number of training steps
:param output_path: Storage path for the model and evaluation files
:param save_best_model: If true, the best model (according to evaluator) is stored at output_path
:param max_grad_norm: Used for gradient normalization.
:param use_amp: Use Automatic Mixed Precision (AMP). Only for Pytorch >= 1.6.0
:param callback: Callback function that is invoked after each evaluation.
It must accept the following three parameters in this order:
`score`, `epoch`, `steps`
:param show_progress_bar: If True, output a tqdm progress bar
:param checkpoint_path: Folder to save checkpoints during training
:param checkpoint_save_steps: Will save a checkpoint after so many steps
:param checkpoint_save_total_limit: Total number of checkpoints to store
"""
##Add info to model card
#info_loss_functions = "\n".join(["- {} with {} training examples".format(str(loss), len(dataloader)) for dataloader, loss in train_objectives])
info_loss_functions = []
for dataloader, loss in train_objectives:
info_loss_functions.extend(ModelCardTemplate.get_train_objective_info(dataloader, loss))
info_loss_functions = "\n\n".join([text for text in info_loss_functions])
info_fit_parameters = json.dumps({"evaluator": fullname(evaluator), "epochs": epochs, "steps_per_epoch": steps_per_epoch, "scheduler": scheduler, "warmup_steps": warmup_steps, "optimizer_class": str(optimizer_class), "optimizer_params": optimizer_params, "weight_decay": weight_decay, "evaluation_steps": evaluation_steps, "max_grad_norm": max_grad_norm }, indent=4, sort_keys=True)
self._model_card_text = None
self._model_card_vars['{TRAINING_SECTION}'] = ModelCardTemplate.__TRAINING_SECTION__.replace("{LOSS_FUNCTIONS}", info_loss_functions).replace("{FIT_PARAMETERS}", info_fit_parameters)
if use_amp:
from torch.cuda.amp import autocast
scaler = torch.cuda.amp.GradScaler()
self.to(self._target_device)
dataloaders = [dataloader for dataloader, _ in train_objectives]
# Use smart batching
for dataloader in dataloaders:
dataloader.collate_fn = self.smart_batching_collate
loss_models = [loss for _, loss in train_objectives]
for loss_model in loss_models:
loss_model.to(self._target_device)
self.best_score = -9999999
if steps_per_epoch is None or steps_per_epoch == 0:
steps_per_epoch = min([len(dataloader) for dataloader in dataloaders])
num_train_steps = int(steps_per_epoch * epochs)
# Prepare optimizers
optimizers = []
schedulers = []
for loss_model in loss_models:
param_optimizer = list(loss_model.named_parameters())
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': weight_decay},
{'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
optimizer = optimizer_class(optimizer_grouped_parameters, **optimizer_params)
scheduler_obj = self._get_scheduler(optimizer, scheduler=scheduler, warmup_steps=warmup_steps, t_total=num_train_steps)
optimizers.append(optimizer)
schedulers.append(scheduler_obj)
global_step = 0
data_iterators = [iter(dataloader) for dataloader in dataloaders]
num_train_objectives = len(train_objectives)
skip_scheduler = False
for epoch in trange(epochs, desc="Epoch", disable=not show_progress_bar):
training_steps = 0
for loss_model in loss_models:
loss_model.zero_grad()
loss_model.train()
for _ in trange(steps_per_epoch, desc="Iteration", smoothing=0.05, disable=not show_progress_bar):
for train_idx in range(num_train_objectives):
loss_model = loss_models[train_idx]
optimizer = optimizers[train_idx]
scheduler = schedulers[train_idx]
data_iterator = data_iterators[train_idx]
try:
data = next(data_iterator)
except StopIteration:
data_iterator = iter(dataloaders[train_idx])
data_iterators[train_idx] = data_iterator
data = next(data_iterator)
features, labels = data
labels = labels.to(self._target_device)
features = list(map(lambda batch: batch_to_device(batch, self._target_device), features))
if use_amp:
with autocast():
loss_value = loss_model(features, labels)
scale_before_step = scaler.get_scale()
scaler.scale(loss_value).backward()
scaler.unscale_(optimizer)
torch.nn.utils.clip_grad_norm_(loss_model.parameters(), max_grad_norm)
scaler.step(optimizer)
scaler.update()
skip_scheduler = scaler.get_scale() != scale_before_step
else:
loss_value = loss_model(features, labels)
loss_value.backward()
torch.nn.utils.clip_grad_norm_(loss_model.parameters(), max_grad_norm)
optimizer.step()
optimizer.zero_grad()
if not skip_scheduler:
scheduler.step()
training_steps += 1
global_step += 1
if evaluation_steps > 0 and training_steps % evaluation_steps == 0:
self._eval_during_training(evaluator, output_path, save_best_model, epoch, training_steps, callback)
for loss_model in loss_models:
loss_model.zero_grad()
loss_model.train()
if checkpoint_path is not None and checkpoint_save_steps is not None and checkpoint_save_steps > 0 and global_step % checkpoint_save_steps == 0:
self._save_checkpoint(checkpoint_path, checkpoint_save_total_limit, global_step)
self._eval_during_training(evaluator, output_path, save_best_model, epoch, -1, callback)
if evaluator is None and output_path is not None: #No evaluator, but output path: save final model version
self.save(output_path)
if checkpoint_path is not None:
self._save_checkpoint(checkpoint_path, checkpoint_save_total_limit, global_step)
def evaluate(self, evaluator: SentenceEvaluator, output_path: str = None):
"""
Evaluate the model
:param evaluator:
the evaluator
:param output_path:
the evaluator can write the results to this path
"""
if output_path is not None:
os.makedirs(output_path, exist_ok=True)
return evaluator(self, output_path)
def _eval_during_training(self, evaluator, output_path, save_best_model, epoch, steps, callback):
"""Runs evaluation during the training"""
eval_path = output_path
if output_path is not None:
os.makedirs(output_path, exist_ok=True)
eval_path = os.path.join(output_path, "eval")
os.makedirs(eval_path, exist_ok=True)
if evaluator is not None:
score = evaluator(self, output_path=eval_path, epoch=epoch, steps=steps)
if callback is not None:
callback(score, epoch, steps)
if score > self.best_score:
self.best_score = score
if save_best_model:
self.save(output_path)
def _save_checkpoint(self, checkpoint_path, checkpoint_save_total_limit, step):
# Store new checkpoint
self.save(os.path.join(checkpoint_path, str(step)))
# Delete old checkpoints
if checkpoint_save_total_limit is not None and checkpoint_save_total_limit > 0:
old_checkpoints = []
for subdir in os.listdir(checkpoint_path):
if subdir.isdigit():
old_checkpoints.append({'step': int(subdir), 'path': os.path.join(checkpoint_path, subdir)})
if len(old_checkpoints) > checkpoint_save_total_limit:
old_checkpoints = sorted(old_checkpoints, key=lambda x: x['step'])
shutil.rmtree(old_checkpoints[0]['path'])
def _load_auto_model(self, model_name_or_path):
"""
Creates a simple Transformer + Mean Pooling model and returns the modules
"""
logger.warning("No sentence-transformers model found with name {}. Creating a new one with MEAN pooling.".format(model_name_or_path))
transformer_model = Transformer(model_name_or_path)
pooling_model = Pooling(transformer_model.get_word_embedding_dimension(), 'mean')
return [transformer_model, pooling_model]
def _load_sbert_model(self, model_path):
"""
Loads a full sentence-transformers model
"""
# Check if the config_sentence_transformers.json file exists (exists since v2 of the framework)
config_sentence_transformers_json_path = os.path.join(model_path, 'config_sentence_transformers.json')
if os.path.exists(config_sentence_transformers_json_path):
with open(config_sentence_transformers_json_path) as fIn:
self._model_config = json.load(fIn)
if '__version__' in self._model_config and 'sentence_transformers' in self._model_config['__version__'] and self._model_config['__version__']['sentence_transformers'] > __version__:
logger.warning("You try to use a model that was created with version {}, however, your version is {}. This might cause unexpected behavior or errors. In that case, try to update to the latest version.\n\n\n".format(self._model_config['__version__']['sentence_transformers'], __version__))
# Check if a readme exists
model_card_path = os.path.join(model_path, 'README.md')
if os.path.exists(model_card_path):
try:
with open(model_card_path, encoding='utf8') as fIn:
self._model_card_text = fIn.read()
except:
pass
# Load the modules of sentence transformer
modules_json_path = os.path.join(model_path, 'modules.json')
with open(modules_json_path) as fIn:
modules_config = json.load(fIn)
modules = OrderedDict()
for module_config in modules_config:
module_class = import_from_string(module_config['type'])
module = module_class.load(os.path.join(model_path, module_config['path']))
modules[module_config['name']] = module
return modules
@staticmethod
def load(input_path):
return SentenceTransformer(input_path)
@staticmethod
def _get_scheduler(optimizer, scheduler: str, warmup_steps: int, t_total: int):
"""
Returns the correct learning rate scheduler. Available scheduler: constantlr, warmupconstant, warmuplinear, warmupcosine, warmupcosinewithhardrestarts
"""
scheduler = scheduler.lower()
if scheduler == 'constantlr':
return transformers.get_constant_schedule(optimizer)
elif scheduler == 'warmupconstant':
return transformers.get_constant_schedule_with_warmup(optimizer, num_warmup_steps=warmup_steps)
elif scheduler == 'warmuplinear':
return transformers.get_linear_schedule_with_warmup(optimizer, num_warmup_steps=warmup_steps, num_training_steps=t_total)
elif scheduler == 'warmupcosine':
return transformers.get_cosine_schedule_with_warmup(optimizer, num_warmup_steps=warmup_steps, num_training_steps=t_total)
elif scheduler == 'warmupcosinewithhardrestarts':
return transformers.get_cosine_with_hard_restarts_schedule_with_warmup(optimizer, num_warmup_steps=warmup_steps, num_training_steps=t_total)
else:
raise ValueError("Unknown scheduler {}".format(scheduler))
@property
def device(self) -> device:
"""
Get torch.device from module, assuming that the whole module has one device.
"""
try:
return next(self.parameters()).device
except StopIteration:
# For nn.DataParallel compatibility in PyTorch 1.5
def find_tensor_attributes(module: nn.Module) -> List[Tuple[str, Tensor]]:
tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)]
return tuples
gen = self._named_members(get_members_fn=find_tensor_attributes)
first_tuple = next(gen)
return first_tuple[1].device
@property
def tokenizer(self):
"""
Property to get the tokenizer that is used by this model
"""
return self._first_module().tokenizer
@tokenizer.setter
def tokenizer(self, value):
"""
Property to set the tokenizer that should be used by this model
"""
self._first_module().tokenizer = value
@property
def max_seq_length(self):
"""
Property to get the maximal input sequence length for the model. Longer inputs will be truncated.
"""
return self._first_module().max_seq_length
@max_seq_length.setter
def max_seq_length(self, value):
"""
Property to set the maximal input sequence length for the model. Longer inputs will be truncated.
"""
self._first_module().max_seq_length = value