diff --git a/Project.toml b/Project.toml index 92ec7a9..65a78dc 100644 --- a/Project.toml +++ b/Project.toml @@ -1,7 +1,7 @@ name = "WaveletsExt" uuid = "8f464e1e-25db-479f-b0a5-b7680379e03f" authors = ["Zeng Fung Liew ", "Shozen Dan "] -version = "0.1.14" +version = "0.1.15" [deps] AverageShiftedHistograms = "77b51b56-6f8f-5c3a-9cb4-d71f9594ea6e" diff --git a/paper/bestbasis.png b/paper/bestbasis.png index c415c32..064dfa9 100644 Binary files a/paper/bestbasis.png and b/paper/bestbasis.png differ diff --git a/paper/denoising.png b/paper/denoising.png index 7dc19c2..16e0c27 100644 Binary files a/paper/denoising.png and b/paper/denoising.png differ diff --git a/paper/examples.jl b/paper/examples.jl index e3b29eb..2720432 100644 --- a/paper/examples.jl +++ b/paper/examples.jl @@ -24,7 +24,7 @@ p2 = wiggle(y) |> p -> plot!(p, yticks=1:9, title="Stationary WT") # Combine and save plot p = plot(p1, p2, layout=(1,2)) -savefig(p, "transforms.png") +savefig(p, "tpaper/ransforms.png") # 2. Best Basis Algorithms ----------------------------------------------------------------- # Compared to Wavelets.jl, WaveletsExt.jl has an extended ability of catering toward @@ -39,12 +39,12 @@ xw = wpdall(x, wt, 6) # ----- Joint Best Basis (JBB) tree = bestbasistree(xw, JBB()) -p1 = plot_tfbdry(tree, 6, nd_col=:green, ln_col=:black, bg_col=:white) |> +p1 = plot_tfbdry(tree, 6, node_color=:green, line_color=:black, background_color=:white) |> p -> plot!(p, title="JBB") # ----- Least Statistically Dependent Basis (LSDB) tree = bestbasistree(xw, LSDB()) -p2 = plot_tfbdry(tree, 6, nd_col=:green, ln_col=:black, bg_col=:white) |> +p2 = plot_tfbdry(tree, 6, node_color=:green, line_color=:black, background_color=:white) |> p -> plot!(p, title="LSDB") # Combine and save plot @@ -118,7 +118,7 @@ ldb = LocalDiscriminantBasis(wt=wt, X̂ = fit_transform(ldb, X, y) # Plot the best basis for feature extraction -p2 = plot_tfbdry(ldb.tree, 6, nd_col=:green, ln_col=:black, bg_col=:white) +p2 = plot_tfbdry(ldb.tree, 6, node_color=:green, line_color=:black, background_color=:white) plot!(p2, title="Basis Selection using LDB") p = plot(p1, p2, size=(600,300)) diff --git a/paper/ldb.png b/paper/ldb.png index 70d18f8..baaa3e0 100644 Binary files a/paper/ldb.png and b/paper/ldb.png differ diff --git a/paper/paper.md b/paper/paper.md index da6a6c5..3e9bb68 100644 --- a/paper/paper.md +++ b/paper/paper.md @@ -71,12 +71,12 @@ xw = wpdall(x, wt, 6) # ----- Joint Best Basis (JBB) tree = bestbasistree(xw, JBB()) -p1 = plot_tfbdry(tree, nd_col=:black, ln_col=:black, bg_col=:white) |> +p1 = plot_tfbdry(tree, node_color=:green, line_color=:black, background_color=:white) |> p -> plot!(p, title="JBB") # ----- Least Statistically Dependent Basis (LSDB) tree = bestbasistree(xw, LSDB()) -p2 = plot_tfbdry(tree, nd_col=:black, ln_col=:black, bg_col=:white) |> +p2 = plot_tfbdry(tree, node_color=:green, line_color=:black, background_color=:white) |> p -> plot!(p, title="LSDB") # Combine and save plot @@ -159,7 +159,7 @@ ldb = LocalDiscriminantBasis( X̂ = fit_transform(ldb, X, y) # Plot the best basis for feature extraction -p2 = plot_tfbdry(ldb.tree, nd_col=:black, ln_col=:black, bg_col=:white) +p2 = plot_tfbdry(ldb.tree, node_color=:green, line_color=:black, background_color=:white) plot!(p2, title="Basis Selection using LDB") # Combine and save plot