-
Notifications
You must be signed in to change notification settings - Fork 72
/
Copy pathcm108.Rmd
845 lines (634 loc) · 27.4 KB
/
cm108.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
# (8) DashR: Part II
```{r include=FALSE}
knitr::opts_chunk$set(echo=TRUE, warning=FALSE, message=FALSE)
```
```{r}
library(tidyverse)
```
**This lecture is 95% completed.** I need to still explain a bit about quosures and then we're all set.
## Today's Agenda
- Announcements: (5 mins)
- Reminder to [give anonymous feedback](https://firasmoosvi.typeform.com/to/KvvsII) on how things are going with online class
- Please create an issue in our [`Discussion`](https://github.com/STAT547-UBC-2019-20/Discussions/issues) repo if you have questions!
- Reminder about milestone04 and assignment04
- Go over [teamwork document](https://stat545.stat.ubc.ca/evaluation/teamwork/)
- Part 1: Review of Dash app (5 mins)
- Demo from cm107: adding a ggplot object
- Basic Dash anatomy
- Part 2: Organizing your Dash app (20 mins)
- Make Plot
- Assign components to variables
- Part 3: Callbacks in Dash (45 mins)
- Template App
- Interlude: `!!sym()` syntax
- Call backs in Dash
- Part 4: Bonus/Optional - Change the scale of the y-axis using a button
## Part 1: Review of Dash app (5 mins)
Let's make sure everyone is on the same page about the [last demo from cm107](https://repl.it/join/lxplstfb-firasm): a ggplot graph inside a Dash app.
Last time we looked at this schematic as a bare-bones skeleton of a Dash app.
![](img/cm107_dashR_anatomy_basic.png)
A few things were left out, here they are now:
![](img/cm107_dashR_anatomy.png)
Roughly corresponding to the above, here is a full template of a DashR app:
```
# author: YOUR NAME
# date: THE DATE
"This script is the main file that creates a Dash app.
Usage: app.R
"
## Load libraries
## Make plot
## Assign components to variables
## Create Dash instance
app <- Dash$new()
## Specify App layout
app$layout(
htmlDiv(
list(
### Add components here
)
)
)
## App Callbacks
## Update Plot
## Run app
app$run_server(debug=TRUE)
# command to add dash app in Rstudio viewer:
# rstudioapi::viewer("http://127.0.0.1:8050")
```
I have also created a template on [repl.it](https://repl.it/@firasm/apptemplateR) that you can fork.
I will update this template as we learn new things (like callbacks and layouts)
## Part 2: Organizing your Dash app (20 mins)
Today we will look at a complete dash app.
But before we get there, we need to do a bit more housekeeping:
**The following two subsections should be updated in the `app.R` file of cm107!!**
### (**NEW**) Make Plot
- To make your app more organized, you may optionally create a function that outputs a ggplot object
- We will call this function `make_plot` to be consistent, but it can be called anything and there can even be multiple functions.
- The input arguments of the `make_plot` function will be the features that the user can filter or select for.
- The `make_plot` function will filter the data based on the provided input arguments and ouput a plot based on the filtered data.
For example, let's turn the creation of a plot in [last demo from cm107](https://repl.it/join/lxplstfb-firasm) into a function (`make_plot`) that outputs a ggplotly object:
```
## YOUR SOLUTION HERE
make_plot <- function() {
# add a ggplot
plot <- mtcars %>%
ggplot() +
theme_bw() +
geom_point(aes(x = mpg, y = hp) ) +
labs(x = 'Fuel efficiency (mpg)',
y = 'Horsepower (hp)') +
ggtitle(("Horsepower and Fuel efficiency for "))
ggplotly(plot)
}
```
### (**NEW**) Assign components to variables
In order to keep `app$layout()` relatively clean, tidy, and easy to debug, I recommend you create your components as variables first and then pass those into the list of `app$layout()`.
For example:
```
## YOUR SOLUTION HERE
# Assign components to variables
heading_helloworld = htmlH1('Hello world!! Dash application')
heading_subtitle = htmlH2('This is a subheading')
graph_1 = dccGraph(id='mtcars',figure = make_plot())
# Specify App layout
app$layout(
htmlDiv(
list(
heading_helloworld,
heading_subtitle,
graph_1
)
)
)
```
## Part 3: Callbacks in Dash (45 mins)
So far, you've learnt how to create Dash core components (ex. dropdown menu filter) and plots.
Let's (finally) now try to link those two things, and interactively update our plots based on the user selection.
To do so, we are going to use what are called `callbacks`.
### Today's app : Dynamically update a plot with a dropdown menu
First, copy the following code in a new R file named `app.R`.
**Step 0 : create the app**
```{app.R_template}
# author: YOUR NAME
# date: THE DATE
"This script is the main file that creates a Dash app for cm108 on the gapminder dataset.
Usage: app.R
"
## Load libraries
library(dash)
library(dashCoreComponents)
library(dashHtmlComponents)
library(dashTable)
library(tidyverse)
library(plotly)
library(gapminder)
## Make plot
make_plot <- function(){
# gets the label matching the column value
#filter our data based on the year/continent selections
data <- gapminder
p <- ggplot(data, aes(x = year, y = gdpPercap, colour = continent,
text = paste('continent: ', continent,
'</br></br></br> Year:', year,
'</br></br> GDP:', gdpPercap))) +
geom_jitter(alpha = 0.6) +
scale_color_manual(name = 'Continent', values = continent_colors) +
scale_x_continuous(breaks = unique(data$year))+
xlab("Year") +
ylab("GDP Per Capita") +
ggtitle("Change in <<VARIBALE>> over time") +
theme_bw()
# passing c("text") into tooltip only shows the contents of the "text" aesthetic specified above
ggplotly(p,
tooltip = c("text"))
}
## Assign components to variables
heading_title <- htmlH1('Gapminder Dash Demo')
heading_subtitle <- htmlH2('Looking at country data interactively')
# Storing the labels/values as a tibble means we can use this both
# to create the dropdown and convert colnames -> labels when plotting
yaxisKey <- tibble(label = c("GDP Per Capita", "Life Expectancy", "Population"),
value = c("gdpPercap", "lifeExp", "pop"))
#Create the dropdown
yaxisDropdown <- dccDropdown(
id = "y-axis",
options = map(
1:nrow(yaxisKey), function(i){
list(label=yaxisKey$label[i], value=yaxisKey$value[i])
}),
value = "gdpPercap"
)
graph <- dccGraph(
id = 'gap-graph',
figure=make_plot() # gets initial data using argument defaults
)
sources <- dccMarkdown("[Data Source](https://cran.r-project.org/web/packages/gapminder/README.html)")
## Create Dash instance
app <- Dash$new()
## Specify App layout
app$layout(
htmlDiv(
list(
heading_title,
heading_subtitle,
#selection components
htmlLabel('Select y-axis metric:'),
yaxisDropdown,
#graph and table
graph,
htmlIframe(height=20, width=10, style=list(borderWidth = 0)), #space
sources
)
)
)
## App Callbacks
## Update Plot
## Run app
app$run_server(debug=TRUE)
# command to add dash app in Rstudio viewer:
# rstudioapi::viewer("http://127.0.0.1:8050")
```
We will walk through the "new elements" of this app:
1. `text` aesthetic in ggplot ([ref here](https://stackoverflow.com/a/43763132)) is useful for specifying what's in the tooltips (applicable to ggplotly objects only)
1. Use of htmlIframe to add some space between Dash components
- This is a bit of a hack until next week when we get to layouts in Dash
- For now, this bit of code adds an empty space 20px x 10px with no border:
`htmlIframe(height=20, width=10, style=list(borderWidth = 0))`
1. Specifying Dropdown options using map (rather than listing out each of them one by one):
- Admittedly, this doesn't save us much time here, but you can imagine how much time/space it would save if you had more than 5 items in the dropdown
![](https://github.com/firasm/bits/raw/master/DCCdropdown.png)
```{r}
yaxisKey <- tibble(label = c("New York City", "Montreal", "San Francisco"),
value = c("NYC", "MTL", "SF"))
map(
1:nrow(yaxisKey), function(i){
list(label=yaxisKey$label[i], value=yaxisKey$value[i])
})
```
To run this code, run `Rscript app.R` in your terminal from the folder where your `app.R` is.
This script creates an app to analyze the gapminder dataset.
It contains a dropdown menu with different values for the y-axis, and a scatter plot - but these are not yet LINKED to the plot! We will do that now
Let's now try to link the dropdown menu and the plot, so that the y-axis of the plot is the value selected from the dropdown menu.
**Step 1 : Update the `make_plot()` function **
The first thing we have to do is to specify in our `make_plot()` function that the name of the y-axis is going to be an input.
We also need to update the function so that the graph depends on the value of this input.
Try to make all the changes that you think necessary so that the plot depends on the value of the input `yaxis`. You can set 'gdpPercap' as the default value. Make sure that the title of the plot depends on the input too.
### Interlude: `!!sym()` syntax
### Back to regularly scheduled programming: Updating make_plot()
```{make_plot_answer}
## YOUR SOLUTION HERE
make_plot <- function(yaxis = "gdpPercap"){
# gets the label matching the column value
y_label <- yaxisKey$label[yaxisKey$value==yaxis]
#filter our data based on the year/continent selections
data <- gapminder
# make the plot!
# on converting yaxis string to col reference (quosure) by `!!sym()`
# see: https://github.com/r-lib/rlang/issues/116#issuecomment-298969559
#
# `sym()` turns strings (or list of strings) to symbols (https://www.rdocumentation.org/packages/rlang/versions/0.2.2/topics/sym)
#
# `paste` concatenates vectors after converting to characters (https://www.rdocumentation.org/packages/base/versions/3.6.1/topics/paste)
p <- ggplot(data, aes(x = year, y = !!sym(yaxis), colour = continent,
text = paste('continent: ', continent,
'</br></br></br> Year:', year,
'</br></br> GDP:', gdpPercap))) +
geom_jitter(alpha = 0.6) +
scale_color_manual(name = 'Continent', values = continent_colors) +
scale_x_continuous(breaks = unique(data$year))+
xlab("Year") +
ylab(y_label) +
ggtitle(paste0("Change in ", y_label, " Over Time")) +
theme_bw()
# passing c("text") into tooltip only shows the contents of
ggplotly(p, tooltip = c("text"))
}
```
Now that we changed the function that creates the graph so that it takes a value of the y-axis as an input, we have to link the two dash components that we have : the graph and the dropdown menu. This is when you create the callback!
### Callbacks
Callbacks are chunks of code that you are going to put :
- after you created your layout (that contains your plots, your dropdown menus,...)
- before you run your application (so before the `app$run_server()` line)
Callbacks usually have the following structure :
```
app$callback(
#What you want to update
output=list(id = <element_id>, property= <element_type>),
#Based on the following values
params=list(input(id = '<value_1>', property='value'),
input(id = '<value_2>', property='value'),
input(id = '<value_3>', property='value')),
#translate your list of params into function arguments
function(<value_1>, <value_2>, <value_3>) {
my_function(<value_1>, <value_2>, <value_3>)
})
```
The angle brackets mean that you have to change those names into the ones that corresponds to the elements of your app.
The way callbacks work is the following : Dash is going to use the inputs that are in the `params` list as the inputs of the `function` in order to change the property of the Dash component that are specified in the `output` argument.
I gave you the general structure of a callback so that you can see what it looks like. Let's now use an example to understand better how to specify callbacks. In our example, we are going to change what variable is used as the y-axis of a graph by using a dropdown menu.
**Step 2 : create the callback**
**Step 2.1 : define the output of the callback**
If we look back at the general structure of a callback, we can see that the first thing we have to define is the element we want to update : this is the output of the callback.
Try to fill up the blanks :
```{output_question}
output=list(id = <element_id>, property= <element_type>)
## YOUR SOLUTION HERE
output=list(id = 'gap-graph', property= 'figure')
```
The required parameter `id` 'gap-graph' is the id of the component you want to display (look where `graph <-` is defined in the template of the code above).
The optional parameter `property` argument refers to which property of your component you want to display.
**Step 2.2 : define the input(s) of the callback**
Then, we have to define our parameters, which are the values we are going to use as an input of our callback to update our graph.
Try to fill in the blanks :
```{params_question}
params=list(input(id = '<value_1>', property='value')),
## YOUR SOLUTION HERE
params=list(input(id = 'y-axis', property='value')),
```
The way to read this code is the same as before : our input is the "value" property of the component that has the ID "y-axis" (look where `yaxisDropdown <-` is defined above in the template).
**Step 2.3 : define the function in the callback**
Finally, we just have translate our list of params into a function arguments.
Try to fill in the blanks :
```{function_question}
function(<value_1>) {
my_function(<value_1>)
}
## YOUR SOLUTION HERE
function(yaxis_value) {
make_plot(yaxis_value)
}
```
Notice that we have never defined `yaxis_value` before, this is just the name that I decided to give to the input of my function. What is important here is that the argument of your function has the same name as the argument you put inside the `make_plot()` function.
If we gather all those answers, we obtain the complete callback :
```{callback}
app$callback(
#update figure of gap-graph
output=list(id = 'gap-graph', property='figure'),
#based on values of year, continent, y-axis components
params=list(input(id = 'y-axis', property='value')),
#this translates your list of params into function arguments
function(yaxis_value) {
make_plot(yaxis_value)
})
```
What is happening here?
Well, see that Dash takes the input property (the 'value' of the 'y-axis' component), uses it as an input argument of the function, and updates the property of the output component (the 'figure' of the 'gap-graph' component) with whatever was returned by the function!
So cool!
**Step 3 : Put it all together!**
Now, add this chunck of code in your app after your app layout under the section heading `## App Callbacks`.
You should have the following code :
```{app_1}
library(dash)
library(dashCoreComponents)
library(dashHtmlComponents)
library(dashTable)
library(tidyverse)
library(plotly)
library(gapminder)
app <- Dash$new(external_stylesheets = "https://codepen.io/chriddyp/pen/bWLwgP.css")
# Storing the labels/values as a tibble means we can use this both
# to create the dropdown and convert colnames -> labels when plotting
yaxisKey <- tibble(label = c("GDP Per Capita", "Life Expectancy", "Population"),
value = c("gdpPercap", "lifeExp", "pop"))
#Create the dropdown
yaxisDropdown <- dccDropdown(
id = "y-axis",
options = map(
1:nrow(yaxisKey), function(i){
list(label=yaxisKey$label[i], value=yaxisKey$value[i])
}),
value = "gdpPercap"
)
# Use a function make_plot() to create the graph
make_plot <- function(yaxis = "gdpPercap"){
# gets the label matching the column value
y_label <- yaxisKey$label[yaxisKey$value==yaxis]
#filter our data based on the year/continent selections
data <- gapminder
# make the plot!
# on converting yaxis string to col reference (quosure) by `!!sym()`
# see: https://github.com/r-lib/rlang/issues/116#issuecomment-298969559
#
# `sym()` turns strings (or list of strings) to symbols (https://www.rdocumentation.org/packages/rlang/versions/0.2.2/topics/sym)
#
# `paste` concatenates vectors after converting to characters (https://www.rdocumentation.org/packages/base/versions/3.6.1/topics/paste)
p <- ggplot(data, aes(x = year, y = !!sym(yaxis), colour = continent,
text = paste('continent: ', continent,
'</br></br></br> Year:', year,
'</br></br></br> GDP:', gdpPercap))) +
geom_jitter(alpha = 0.6) +
scale_color_manual(name = 'Continent', values = continent_colors) +
scale_x_continuous(breaks = unique(data$year))+
xlab("Year") +
ylab(y_label) +
ggtitle(paste0("Change in ", y_label, " Over Time")) +
theme_bw()
# passing c("text") into tooltip only shows the contents of
ggplotly(p, tooltip = c("text"))
}
# Now we define the graph as a dash component using generated figure
graph <- dccGraph(
id = 'gap-graph',
figure=make_plot() # gets initial data using argument defaults
)
app$layout(
htmlDiv(
list(
htmlH1('Gapminder Dash Demo'),
htmlH2('Looking at country data interactively'),
#selection components
htmlLabel('Select y-axis metric:'),
yaxisDropdown,
#graph and table
graph,
htmlIframe(height=20, width=10, style=list(borderWidth = 0)), #space
dccMarkdown("[Data Source](https://cran.r-project.org/web/packages/gapminder/README.html)")
)
)
)
app$callback(
#update figure of gap-graph
output=list(id = 'gap-graph', property='figure'),
#based on values of year, continent, y-axis components
params=list(input(id = 'y-axis', property='value')),
#this translates your list of params into function arguments
function(yaxis_value) {
make_plot(yaxis_value)
})
app$run_server()
```
Run this app, and try to play with the dropdown menu!
You can see that what is displayed by the graph on the y-axis depends on the value you choose on your dropdown menu.
Congratulations, you just did your first callback and a "real" dashboard!!!
## Part 4: BONUS/OPTIONAL (if you want extra practice!) : Change the scale of the y-axis using a button
Now, let's do another exercise : add a button to specify if we want the scale of the y-axis to be linear or logarithmic.
**Step 0 : Create the button and add it to the list in `app$layout`**
Try to add a button with 2 choices : `Linear` and `Log`
Here is the code for the button component:
```
#Create the button
logbutton <- dccRadioItems(
id = 'yaxis-type',
options = list(list(label = 'Linear', value = 'linear'),
list(label = 'Log', value = 'log')),
value = 'linear'
)
```
**Step 1 : Update the `make_plot()` function**
Update the `make_plot()` function so that one of its arguments changes the scale of the y-axis.
```{answer_make_plot_button}
## YOUR SOLUTION HERE
make_plot <- function(yaxis = "gdpPercap", scale = "linear"){
# gets the label matching the column value
y_label <- yaxisKey$label[yaxisKey$value==yaxis]
#filter our data based on the year/continent selections
data <- gapminder
p <- ggplot(data, aes(x = year, y = !!sym(yaxis), colour = continent,
text = paste('continent: ', continent,
'</br></br></br> Year:', year,
'</br></br> GDP:', gdpPercap))) +
geom_jitter(alpha = 0.6) +
scale_color_manual(name = 'Continent', values = continent_colors) +
scale_x_continuous(breaks = unique(data$year))+
xlab("Year") +
ylab(y_label) +
ggtitle(paste0("Change in ", y_label, " over time (Scale : ", scale, ")")) +
theme_bw()
if (scale == 'log'){
p <- p + scale_y_continuous(trans='log10')
}
# passing c("text") into tooltip only shows the contents of
ggplotly(p, tooltip = c("text"))
}
```
**Step 2 : Create the callback**
Now, it's time to create the callback!
*Hint* : As the Dash component you have to update is the same as the one we updated in Exercise 1, so you can use the same callback as before and just add another variable as part of the input.
```{answer_callback_button}
## YOUR SOLUTION HERE
app$callback(
#update figure of gap-graph
output=list(id = 'gap-graph', property='figure'),
#based on values of year, continent, y-axis components
params=list(input(id = 'y-axis', property='value'),
input(id = 'yaxis-type', property='value')),
#this translates your list of params into function arguments
function(yaxis_value, yaxis_scale) {
make_plot(yaxis_value, yaxis_scale)
})
```
**Step 3 : put it all togheter**
Now, gather all your chunks of code. Your final answer should be similar to this :
```{answer_code_with_button}
# author: YOUR NAME
# date: THE DATE
"This script is the main file that creates a Dash app for cm108 on the gapminder dataset.
Usage: app.R
"
## Load libraries
library(dash)
library(dashCoreComponents)
library(dashHtmlComponents)
library(dashTable)
library(tidyverse)
library(plotly)
library(gapminder)
## Make plot
make_plot <- function(yaxis = "gdpPercap",
scale = "linear"){
# gets the label matching the column value
y_label <- yaxisKey$label[yaxisKey$value==yaxis]
#filter our data based on the year/continent selections
data <- gapminder
# make the plot!
# on converting yaxis string to col reference (quosure) by `!!sym()`
# see: https://github.com/r-lib/rlang/issues/116#issuecomment-298969559
#
# `sym()` turns strings (or list of strings) to symbols (https://www.rdocumentation.org/packages/rlang/versions/0.2.2/topics/sym)
#
# `paste` concatenates vectors after converting to characters (https://www.rdocumentation.org/packages/base/versions/3.6.1/topics/paste)
p <- ggplot(data, aes(x = year, y = !!sym(yaxis), colour = continent,
text = paste('continent: ', continent,
'</br></br></br> Year:', year,
'</br></br>GDP:', gdpPercap))) +
geom_jitter(alpha = 0.6) +
scale_color_manual(name = 'Continent', values = continent_colors) +
scale_x_continuous(breaks = unique(data$year))+
xlab("Year") +
ylab(y_label) +
ggtitle(paste0("Change in ", y_label, " over time (Scale : ", scale, ")")) +
theme_bw()
if (scale == 'log'){
p <- p + scale_y_continuous(trans='log10')
}
# passing c("text") into tooltip only shows the contents of
ggplotly(p, tooltip = c("text"))
}
## Assign components to variables
heading_title <- htmlH1('Gapminder Dash Demo')
heading_subtitle <- htmlH2('Looking at country data interactively')
# Storing the labels/values as a tibble means we can use this both
# to create the dropdown and convert colnames -> labels when plotting
yaxisKey <- tibble(label = c("GDP Per Capita", "Life Expectancy", "Population"),
value = c("gdpPercap", "lifeExp", "pop"))
#Create the dropdown
yaxisDropdown <- dccDropdown(
id = "y-axis",
options = map(
1:nrow(yaxisKey), function(i){
list(label=yaxisKey$label[i], value=yaxisKey$value[i])
}),
value = "gdpPercap"
)
#Create the button
logbutton <- dccRadioItems(
id = 'yaxis-type',
options = list(list(label = 'Linear', value = 'linear'),
list(label = 'Log', value = 'log')),
value = 'linear'
)
graph <- dccGraph(
id = 'gap-graph',
figure=make_plot() # gets initial data using argument defaults
)
sources <- dccMarkdown("[Data Source](https://cran.r-project.org/web/packages/gapminder/README.html)")
## Create Dash instance
app <- Dash$new()
## Specify App layout
app$layout(
htmlDiv(
list(
heading_title,
heading_subtitle,
#selection components
htmlLabel('Select y-axis metric:'),
yaxisDropdown,
htmlIframe(height=15, width=10, style=list(borderWidth = 0)), #space
htmlLabel('Select y scale : '),
logbutton,
#graph
graph,
htmlIframe(height=20, width=10, style=list(borderWidth = 0)), #space
sources
)
)
)
## App Callbacks
app$callback(
#update figure of gap-graph
output=list(id = 'gap-graph', property='figure'),
#based on values of year, continent, y-axis components
params=list(input(id = 'y-axis', property='value'),
input(id = 'yaxis-type', property='value')),
#this translates your list of params into function arguments
function(yaxis_value, yaxis_scale) {
make_plot(yaxis_value, yaxis_scale)
})
## Run app
app$run_server(debug=TRUE)
# command to add dash app in Rstudio viewer:
# rstudioapi::viewer("http://127.0.0.1:8050")
```
Finally, try to run your app to make sure everything works.
Now you know how to add multiple callbacks!
For the second part of this lecture, we are going to go one level up : it's time to deal with more complex callbacks!!
## Appendix: Anatomy of a full Dash app
#### Load libraries & documentation
Documentation goes first inside double quotes " " and should include a Usage line of just app.R.
Libraries are then loaded.
#### (**NEW**) Make Plot
- To make your app more organized, you may optionally create a function that outputs a ggplot object
- We will call this function `make_plot` to be consistent, but it can be called anything and there can even be multiple functions.
- The input arguments of the `make_plot` function will be the features that the user can filter or select for.
- The `make_plot` function will filter the data based on the provided input arguments and ouput a plot based on the filtered data.
For example, let's turn the creation of a plot in [last demo from cm107](https://repl.it/join/lxplstfb-firasm) into a function (`make_plot`) that outputs a ggplotly object:
```
## YOUR SOLUTION HERE
make_plot <- function() {
# add a ggplot
plot <- mtcars %>%
ggplot() +
theme_bw() +
geom_point(aes(x = mpg, y = hp) ) +
labs(x = 'Fuel efficiency (mpg)',
y = 'Horsepower (hp)') +
ggtitle(("Horsepower and Fuel efficiency for "))
ggplotly(plot)
}
```
#### Create Dash instance
- `app <- Dash$new()` creates a new instance of a dash app
#### (**NEW**) Assign components to variables
In order to keep `app$layout()` relatively clean, tidy, and easy to debug, I recommend you create your components as variables first and then pass those into the list of `app$layout()`.
For example:
```
# Assign components to variables
heading_helloworld = htmlH1('Hello world!! Dash application')
heading_subtitle = htmlH2('This is a subheading')
graph_1 = dccGraph(id='mtcars',figure = make_plot())
# Specify App layout
app$layout(
htmlDiv(
list(
heading_helloworld,
heading_subtitle,
graph_1
)
)
)
```
#### Specify App Layout `app$layout()`
- `app$layout()` describes the layout of your app.
- An `htmlDiv` is placed inside an `app$layout()` call that allows you to specify where to add "Divs" in your dashboard. For example, create an area for plots, a header for a title, or a sidebar for filters. It also allows you to specify where in your dashboard to place your graphs and filters. We will look at these later in the layouts section ; for now, you will need just one div and specify Dash components using a list
- See [here](https://dashr.plot.ly/getting-started) for more information on Dash layouts.
#### (**NEW**) App Callbacks `app$callback()`
- `app$callback()` allows you to use Dash components (ex. dropdown menus) to interactively change your plots (or other components).
- `app$callback()` can also be used to filter your data, or do other things that control the data going into your plots.
\newline
- See [here](https://dashr.plot.ly/getting-started-part-2) for more information on Dash callbacks.
#### Run App
- `app$run_server()` runs your Dash app.
- Render your Dash app by running `$ Rscript app.R` in your terminal.
- Look at the output of your shell and navigate to the specified address (should be http://127.0.0.1:8050/) in your web browser. You should see your dash app.
- Note: To automatically reload your dashboard when you make changes, add `debug=TRUE` to the `app$run_server` call.