Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Group 11 - simpute_py Python #42

Open
10 of 16 tasks
kenuiuc opened this issue Feb 3, 2023 · 3 comments
Open
10 of 16 tasks

Group 11 - simpute_py Python #42

kenuiuc opened this issue Feb 3, 2023 · 3 comments

Comments

@kenuiuc
Copy link

kenuiuc commented Feb 3, 2023

Submitting Author: Ken Wang @kenuiuc
All current maintainers: @kenuiuc, @LisaSeq, @renee-kwon, @Althrun-sun
Package Name: simpute_py
One-Line Description of Package: A simple data imputation tool.
Repository Link: https://github.com/UBC-MDS/simpute-py
Version submitted: v0.1.0
Editor: TBD
Reviewer 1: TBD
Reviewer 2: TBD
Archive: TBD
Version accepted: TBD
Date accepted (month/day/year): TBD


Description

Our python package for simple data imputation will allow you to quickly and seamlessly impute any missing data (be numeric, categorical, date/time or boolean values) using any large datasets.

Scope

Please fill out a pre-submission inquiry before submitting a data visualization package. For more info, see notes on categories of our guidebook.

  • For all submissions, explain how the and why the package falls under the categories you indicated above. In your explanation, please address the following points (briefly, 1-2 sentences for each):

    • Who is the target audience and what are scientific applications of this package?

Beginner level data analysts and data engineers who have basic Python skills.

  • Are there other Python packages that accomplish the same thing? If so, how does yours differ?

We do have other packages you can use such as AutoImpute and MIDASpy. However our package aims to provide functionalities not provided in either package (such as imputing Date type data) and provide an easier to use solution to the beginner users.

  • If you made a pre-submission enquiry, please paste the link to the corresponding issue, forum post, or other discussion, or @tag the editor you contacted:

NA

Technical checks

For details about the pyOpenSci packaging requirements, see our packaging guide. Confirm each of the following by checking the box. This package:

  • does not violate the Terms of Service of any service it interacts with.
  • has an OSI approved license.
  • contains a README with instructions for installing the development version.
  • includes documentation with examples for all functions.
  • contains a vignette with examples of its essential functions and uses.
  • has a test suite.
  • has continuous integration, such as Travis CI, AppVeyor, CircleCI, and/or others.

Publication options

JOSS Checks
  • The package has an obvious research application according to JOSS's definition in their submission requirements. Be aware that completing the pyOpenSci review process does not guarantee acceptance to JOSS. Be sure to read their submission requirements (linked above) if you are interested in submitting to JOSS.
  • The package is not a "minor utility" as defined by JOSS's submission requirements: "Minor ‘utility’ packages, including ‘thin’ API clients, are not acceptable." pyOpenSci welcomes these packages under "Data Retrieval", but JOSS has slightly different criteria.
  • The package contains a paper.md matching JOSS's requirements with a high-level description in the package root or in inst/.
  • The package is deposited in a long-term repository with the DOI:

Note: Do not submit your package separately to JOSS

Are you OK with Reviewers Submitting Issues and/or pull requests to your Repo Directly?

This option will allow reviewers to open smaller issues that can then be linked to PR's rather than submitting a more dense text based review. It will also allow you to demonstrate addressing the issue via PR links.

  • Yes I am OK with reviewers submitting requested changes as issues to my repo. Reviewers will then link to the issues in their submitted review.

Code of conduct

Please fill out our survey

P.S. *Have feedback/comments about our review process? Leave a comment here

Editor and Review Templates

The editor template can be found here.

The review template can be found here.

@spencergerlach
Copy link

Package Review

  • As the reviewer I confirm that there are no conflicts of interest for me to review this work.

Documentation

The package includes all the following forms of documentation:

  • A statement of need clearly stating problems the software is designed to solve and its target audience in README.
  • [ xx] Installation instructions: for the development version of the package and any non-standard dependencies in README.
  • Vignette(s) demonstrating major functionality that runs successfully locally.
  • Function Documentation: for all user-facing functions.
  • Examples for all user-facing functions.
  • Community guidelines including contribution guidelines in the README or CONTRIBUTING.
  • Metadata including author(s), author e-mail(s), a url, and any other relevant metadata e.g., in a pyproject.toml file or elsewhere.

Readme file requirements
The package meets the readme requirements below:

  • Package has a README.md file in the root directory.

The README should include, from top to bottom:

  • The package name
  • Badges for:
    • Continuous integration and test coverage,
    • Docs building (if you have a documentation website),
    • A repostatus.org badge,
    • Python versions supported,
    • Current package version (on PyPI / Conda).

NOTE: If the README has many more badges, you might want to consider using a table for badges: see this example. Such a table should be more wide than high. (Note that the a badge for pyOpenSci peer-review will be provided upon acceptance.)

  • Short description of package goals.
  • Package installation instructions
  • Any additional setup required to use the package (authentication tokens, etc.)
  • Descriptive links to all vignettes. If the package is small, there may only be a need for one vignette which could be placed in the README.md file.
    • Brief demonstration of package usage (as it makes sense - links to vignettes could also suffice here if package description is clear)
  • Link to your documentation website.
  • If applicable, how the package compares to other similar packages and/or how it relates to other packages in the scientific ecosystem.
  • Citation information

Usability

Reviewers are encouraged to submit suggestions (or pull requests) that will improve the usability of the package as a whole.
Package structure should follow general community best-practices. In general please consider whether:

  • Package documentation is clear and easy to find and use.
  • The need for the package is clear
  • All functions have documentation and associated examples for use
  • The package is easy to install

Functionality

  • Installation: Installation succeeds as documented.
  • Functionality: Any functional claims of the software been confirmed.
  • Performance: Any performance claims of the software been confirmed.
  • Automated tests: Tests cover essential functions of the package and a reasonable range of inputs and conditions. All tests pass on the local machine.
  • Continuous Integration: Has continuous integration setup (We suggest using Github actions but any CI platform is acceptable for review)
  • Packaging guidelines: The package conforms to the pyOpenSci packaging guidelines.
    A few notable highlights to look at:
    • Package supports modern versions of Python and not End of life versions.
    • Code format is standard throughout package and follows PEP 8 guidelines (CI tests for linting pass)

For packages also submitting to JOSS

Note: Be sure to check this carefully, as JOSS's submission requirements and scope differ from pyOpenSci's in terms of what types of packages are accepted.

The package contains a paper.md matching JOSS's requirements with:

  • A short summary describing the high-level functionality of the software
  • Authors: A list of authors with their affiliations
  • A statement of need clearly stating problems the software is designed to solve and its target audience.
  • References: With DOIs for all those that have one (e.g. papers, datasets, software).

Final approval (post-review)

  • The author has responded to my review and made changes to my satisfaction. I recommend approving this package.

Estimated hours spent reviewing: 1


Review Comments

  • No toy dataframe was created in the num_imputer. Consider adding a small toy dataframe to the function examples.
  • Some functions, e.g. date_imputer do not have examples in the function documentation
  • I could not find a link to the documentation in the README anywhere, so unsure if it's been made or not.
  • The examples given in the Usage section reference a csv in the tests folder, but we can't read this without cloning the repo. The example should create a toy dataframe within the examples so we don't need to read a csv from your repo.
  • Minor comment: the function names in the usage section are capitalized, I feel like they should be lowercase like the actual function.
  • Release tag: I think the release tag for the finalized python project needs to be v1.0.0

@hcwang24
Copy link

hcwang24 commented Feb 8, 2023

Package Review

Please check off boxes as applicable, and elaborate in the comments below. Your review is not limited to these topics, as described in the reviewer guide

  • As the reviewer I confirm that there are no conflicts of interest for me to review this work (If you are unsure whether you are in conflict, please speak to your editor before starting your review).

Documentation

The package includes all the following forms of documentation:

  • A statement of need clearly stating problems the software is designed to solve and its target audience in README.
  • Installation instructions: for the development version of the package and any non-standard dependencies in README.
  • [] Vignette(s) demonstrating major functionality that runs successfully locally.
  • Function Documentation: for all user-facing functions.
  • [] Examples for all user-facing functions.
  • Community guidelines including contribution guidelines in the README or CONTRIBUTING.
  • Metadata including author(s), author e-mail(s), a url, and any other relevant metadata e.g., in a pyproject.toml file or elsewhere.

Readme file requirements
The package meets the readme requirements below:

  • Package has a README.md file in the root directory.

The README should include, from top to bottom:

  • The package name
  • Badges for:
    • Continuous integration and test coverage,
    • Docs building (if you have a documentation website),
    • A repostatus.org badge,
    • Python versions supported,
    • Current package version (on PyPI / Conda).

NOTE: If the README has many more badges, you might want to consider using a table for badges: see this example. Such a table should be more wide than high. (Note that the a badge for pyOpenSci peer-review will be provided upon acceptance.)

  • Short description of package goals.
  • Package installation instructions
  • Any additional setup required to use the package (authentication tokens, etc.)
  • Descriptive links to all vignettes. If the package is small, there may only be a need for one vignette which could be placed in the README.md file.
    • Brief demonstration of package usage (as it makes sense - links to vignettes could also suffice here if package description is clear)
  • Link to your documentation website.
  • If applicable, how the package compares to other similar packages and/or how it relates to other packages in the scientific ecosystem.
  • Citation information

Usability

Reviewers are encouraged to submit suggestions (or pull requests) that will improve the usability of the package as a whole.
Package structure should follow general community best-practices. In general please consider whether:

  • Package documentation is clear and easy to find and use.
  • The need for the package is clear
  • All functions have documentation and associated examples for use
  • The package is easy to install

Functionality

  • Installation: Installation succeeds as documented.
  • Functionality: Any functional claims of the software been confirmed.
  • Performance: Any performance claims of the software been confirmed.
  • Automated tests: Tests cover essential functions of the package and a reasonable range of inputs and conditions. All tests pass on the local machine.
  • Continuous Integration: Has continuous integration setup (We suggest using Github actions but any CI platform is acceptable for review)
  • Packaging guidelines: The package conforms to the pyOpenSci packaging guidelines.
    A few notable highlights to look at:
    • Package supports modern versions of Python and not End of life versions.
    • Code format is standard throughout package and follows PEP 8 guidelines (CI tests for linting pass)

For packages also submitting to JOSS

Note: Be sure to check this carefully, as JOSS's submission requirements and scope differ from pyOpenSci's in terms of what types of packages are accepted.

The package contains a paper.md matching JOSS's requirements with:

  • A short summary describing the high-level functionality of the software
  • Authors: A list of authors with their affiliations
  • A statement of need clearly stating problems the software is designed to solve and its target audience.
  • References: With DOIs for all those that have one (e.g. papers, datasets, software).

Final approval (post-review)

  • The author has responded to my review and made changes to my satisfaction. I recommend approving this package.

Estimated hours spent reviewing: 1 hour


Review Comments

  • Great package with good potential usage in the python ecosystem.
  • If all the tests have passed, the team can consider adding the badges to the Readme file. Example badges can be the one passing test coverage, etc.
  • Usage information is not very clear as the sample dataset should be automatically created instead of loaded from the repo.
  • Please consider adding an example usage response from each function. It can be a simple imputation with a 3x2 data frame.
  • If the readtheDocs document was generated in this repo, please provide a link to it in the readme.
  • poetry dependencies can include a >= sign instead of a specific version of python. And since Pandas is a common package, does it need to be included in the toml file?
  • Good usage of branching to write codes and test your functions before PR. Looks like a roughly equal contribution from teammates.

@tanmayag97
Copy link

Package Review

Please check off boxes as applicable, and elaborate in comments below. Your review is not limited to these topics, as described in the reviewer guide

  • As the reviewer I confirm that there are no conflicts of interest for me to review this work (If you are unsure whether you are in conflict, please speak to your editor before starting your review).

Documentation

The package includes all the following forms of documentation:

  • A statement of need clearly stating problems the software is designed to solve and its target audience in README.
  • Installation instructions: for the development version of the package and any non-standard dependencies in README.
  • Vignette(s) demonstrating major functionality that runs successfully locally.
  • Function Documentation: for all user-facing functions.
  • Examples for all user-facing functions.
  • Community guidelines including contribution guidelines in the README or CONTRIBUTING.
  • Metadata including author(s), author e-mail(s), a url, and any other relevant metadata e.g., in a pyproject.toml file or elsewhere.

Readme file requirements
The package meets the readme requirements below:

  • Package has a README.md file in the root directory.

The README should include, from top to bottom:

  • The package name
  • Badges for:
    • Continuous integration and test coverage,
    • Docs building (if you have a documentation website),
    • A repostatus.org badge,
    • Python versions supported,
    • Current package version (on PyPI / Conda).

NOTE: If the README has many more badges, you might want to consider using a table for badges: see this example. Such a table should be more wide than high. (Note that the a badge for pyOpenSci peer-review will be provided upon acceptance.)

  • Short description of package goals.
  • Package installation instructions
  • Any additional setup required to use the package (authentication tokens, etc.)
  • Descriptive links to all vignettes. If the package is small, there may only be a need for one vignette which could be placed in the README.md file.
    • Brief demonstration of package usage (as it makes sense - links to vignettes could also suffice here if package description is clear)
  • Link to your documentation website.
  • If applicable, how the package compares to other similar packages and/or how it relates to other packages in the scientific ecosystem.
  • Citation information

Usability

Reviewers are encouraged to submit suggestions (or pull requests) that will improve the usability of the package as a whole.
Package structure should follow general community best-practices. In general please consider whether:

  • Package documentation is clear and easy to find and use.
  • The need for the package is clear
  • All functions have documentation and associated examples for use
  • The package is easy to install

Functionality

  • Installation: Installation succeeds as documented.
  • Functionality: Any functional claims of the software been confirmed.
  • Performance: Any performance claims of the software been confirmed.
  • Automated tests: Tests cover essential functions of the package and a reasonable range of inputs and conditions. All tests pass on the local machine.
  • Continuous Integration: Has continuous integration setup (We suggest using Github actions but any CI platform is acceptable for review)
  • Packaging guidelines: The package conforms to the pyOpenSci packaging guidelines.
    A few notable highlights to look at:
    • Package supports modern versions of Python and not End of life versions.
    • Code format is standard throughout package and follows PEP 8 guidelines (CI tests for linting pass)

Final approval (post-review)

  • The author has responded to my review and made changes to my satisfaction. I recommend approving this package.

Estimated hours spent reviewing: 2 hours


Review Comments

  • For me, all the tests in the package have passed. Authors should add a badge for that and ci-cd passing in the README as well.
  • The code coverage was around 91%, which is awesome, I recommend the authors to add that to their README as well.
  • The documentation for date imputer should have a default argument to a more generic method like a forward or backward fill method as median imputation is not a good way.
  • There is a dummy.ipynb file added in the src folder, I don't understand the point of it. Maybe it is commited by mistake?
  • I was not able to find any readthedocs document link in the README file, please put it in there so it is easier to go through the documentation of the functions.
  • The idea behind this package is really good and work done by the team in such a short time frame is amazing, keep it up!

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

4 participants