-
Notifications
You must be signed in to change notification settings - Fork 42
/
abstractmcmc.jl
370 lines (316 loc) · 10.1 KB
/
abstractmcmc.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
"""
HMCState
Represents the state of a [`HMCSampler`](@ref).
# Fields
$(FIELDS)
"""
struct HMCState{
TTrans<:Transition,
TMetric<:AbstractMetric,
TKernel<:AbstractMCMCKernel,
TAdapt<:Adaptation.AbstractAdaptor,
}
"Index of current iteration."
i::Int
"Current [`Transition`](@ref)."
transition::TTrans
"Current [`AbstractMetric`](@ref), possibly adapted."
metric::TMetric
"Current [`AbstractMCMCKernel`](@ref)."
κ::TKernel
"Current [`AbstractAdaptor`](@ref)."
adaptor::TAdapt
end
getadaptor(state::HMCState) = state.adaptor
getmetric(state::HMCState) = state.metric
getintegrator(state::HMCState) = state.κ.τ.integrator
"""
$(TYPEDSIGNATURES)
A convenient wrapper around `AbstractMCMC.sample` avoiding explicit construction of [`HMCSampler`](@ref).
"""
function AbstractMCMC.sample(
rng::Random.AbstractRNG,
model::LogDensityModel,
sampler::AbstractHMCSampler,
N::Integer;
n_adapts::Int = min(div(N, 10), 1_000),
progress = true,
verbose = false,
callback = nothing,
kwargs...,
)
if callback === nothing
callback = HMCProgressCallback(N, progress = progress, verbose = verbose)
progress = false # don't use AMCMC's progress-funtionality
end
return AbstractMCMC.mcmcsample(
rng,
model,
sampler,
N;
n_adapts = n_adapts,
progress = progress,
verbose = verbose,
callback = callback,
kwargs...,
)
end
function AbstractMCMC.sample(
rng::Random.AbstractRNG,
model::LogDensityModel,
sampler::AbstractHMCSampler,
parallel::AbstractMCMC.AbstractMCMCEnsemble,
N::Integer,
nchains::Integer;
n_adapts::Int = min(div(N, 10), 1_000),
progress = true,
verbose = false,
callback = nothing,
kwargs...,
)
if callback === nothing
callback = HMCProgressCallback(N, progress = progress, verbose = verbose)
progress = false # don't use AMCMC's progress-funtionality
end
return AbstractMCMC.mcmcsample(
rng,
model,
sampler,
parallel,
N,
nchains;
n_adapts = n_adapts,
progress = progress,
verbose = verbose,
callback = callback,
kwargs...,
)
end
function AbstractMCMC.step(
rng::AbstractRNG,
model::LogDensityModel,
spl::AbstractHMCSampler;
init_params = nothing,
kwargs...,
)
# Unpack model
logdensity = model.logdensity
# Define metric
metric = make_metric(spl, logdensity)
# Construct the hamiltonian using the initial metric
hamiltonian = Hamiltonian(metric, model)
# Define integration algorithm
# Find good eps if not provided one
init_params = make_init_params(spl, logdensity, init_params)
ϵ = make_step_size(rng, spl, hamiltonian, init_params)
integrator = make_integrator(spl, ϵ)
# Make kernel
κ = make_kernel(spl, integrator)
# Make adaptor
adaptor = make_adaptor(spl, metric, integrator)
# Get an initial sample.
h, t = AdvancedHMC.sample_init(rng, hamiltonian, init_params)
# Compute next transition and state.
state = HMCState(0, t, metric, κ, adaptor)
# Take actual first step.
return AbstractMCMC.step(rng, model, spl, state; kwargs...)
end
function AbstractMCMC.step(
rng::AbstractRNG,
model::LogDensityModel,
spl::AbstractHMCSampler,
state::HMCState;
kwargs...,
)
# Compute transition.
i = state.i + 1
t_old = state.transition
adaptor = state.adaptor
κ = state.κ
metric = state.metric
# Reconstruct hamiltonian.
h = Hamiltonian(metric, model)
# Make new transition.
t = transition(rng, h, κ, t_old.z)
# Adapt h and spl.
tstat = stat(t)
n_adapts = kwargs[:n_adapts]
h, κ, isadapted = adapt!(h, κ, adaptor, i, n_adapts, t.z.θ, tstat.acceptance_rate)
tstat = merge(tstat, (is_adapt = isadapted,))
# Compute next transition and state.
newstate = HMCState(i, t, h.metric, κ, adaptor)
# Return `Transition` with additional stats added.
return Transition(t.z, tstat), newstate
end
################
### Callback ###
################
"""
HMCProgressCallback
A callback to be used with AbstractMCMC.jl's interface, replicating the
logging behavior of the non-AbstractMCMC [`sample`](@ref).
# Fields
$(FIELDS)
"""
struct HMCProgressCallback{P}
"`Progress` meter from ProgressMeters.jl."
pm::P
"Specifies whether or not to use display a progress bar."
progress::Bool
"If `progress` is not specified and this is `true` some information will be logged upon completion of adaptation."
verbose::Bool
"Number of divergent transitions fo far."
num_divergent_transitions::Ref{Int}
num_divergent_transitions_during_adaption::Ref{Int}
end
function HMCProgressCallback(n_samples; progress = true, verbose = false)
pm =
progress ? ProgressMeter.Progress(n_samples, desc = "Sampling", barlen = 31) :
nothing
HMCProgressCallback(pm, progress, verbose, Ref(0), Ref(0))
end
function (cb::HMCProgressCallback)(rng, model, spl, t, state, i; nadapts = 0, kwargs...)
progress = cb.progress
verbose = cb.verbose
pm = cb.pm
metric = state.metric
adaptor = state.adaptor
κ = state.κ
tstat = t.stat
isadapted = tstat.is_adapt
if isadapted
cb.num_divergent_transitions_during_adaption[] += tstat.numerical_error
else
cb.num_divergent_transitions[] += tstat.numerical_error
end
# Update progress meter
if progress
percentage_divergent_transitions = cb.num_divergent_transitions[] / i
percentage_divergent_transitions_during_adaption =
cb.num_divergent_transitions_during_adaption[] / i
if percentage_divergent_transitions > 0.25
@warn "The level of numerical errors is high. Please check the model carefully." maxlog =
3
end
# Do include current iteration and mass matrix
pm_next!(
pm,
(
iterations = i,
ratio_divergent_transitions = round(
percentage_divergent_transitions;
digits = 2,
),
ratio_divergent_transitions_during_adaption = round(
percentage_divergent_transitions_during_adaption;
digits = 2,
),
tstat...,
mass_matrix = metric,
),
)
# Report finish of adapation
elseif verbose && isadapted && i == nadapts
@info "Finished $nadapts adapation steps" adaptor κ.τ.integrator metric
end
end
#############
### Utils ###
#############
function make_init_params(spl::AbstractHMCSampler, logdensity, init_params)
T = sampler_eltype(spl)
if init_params == nothing
d = LogDensityProblems.dimension(logdensity)
init_params = randn(rng, d)
end
return T.(init_params)
end
#########
function make_step_size(
rng::Random.AbstractRNG,
spl::HMCSampler,
hamiltonian::Hamiltonian,
init_params,
)
return spl.κ.τ.integrator.ϵ
end
function make_step_size(
rng::Random.AbstractRNG,
spl::AbstractHMCSampler,
hamiltonian::Hamiltonian,
init_params,
)
T = sampler_eltype(spl)
return make_step_size(rng, spl.integrator, T, hamiltonian, init_params)
end
function make_step_size(
rng::Random.AbstractRNG,
integrator::AbstractIntegrator,
T::Type,
hamiltonian::Hamiltonian,
init_params,
)
return integrator.ϵ
end
function make_step_size(
rng::Random.AbstractRNG,
integrator::Symbol,
T::Type,
hamiltonian::Hamiltonian,
init_params,
)
ϵ = find_good_stepsize(rng, hamiltonian, init_params)
@info string("Found initial step size ", ϵ)
return T(ϵ)
end
make_integrator(spl::HMCSampler, ϵ::Real) = spl.κ.τ.integrator
make_integrator(spl::AbstractHMCSampler, ϵ::Real) = make_integrator(spl.integrator, ϵ)
make_integrator(i::AbstractIntegrator, ϵ::Real) = i
make_integrator(i::Symbol, ϵ::Real) = make_integrator(Val(i), ϵ)
make_integrator(@nospecialize(i), ::Real) = error("Integrator $i not supported.")
make_integrator(i::Val{:leapfrog}, ϵ::Real) = Leapfrog(ϵ)
make_integrator(i::Val{:jitteredleapfrog}, ϵ::T) where {T<:Real} =
JitteredLeapfrog(ϵ, T(0.1ϵ))
make_integrator(i::Val{:temperedleapfrog}, ϵ::T) where {T<:Real} = TemperedLeapfrog(ϵ, T(1))
#########
make_metric(@nospecialize(i), T::Type, d::Int) = error("Metric $(typeof(i)) not supported.")
make_metric(i::Symbol, T::Type, d::Int) = make_metric(Val(i), T, d)
make_metric(i::AbstractMetric, T::Type, d::Int) = i
make_metric(i::Val{:diagonal}, T::Type, d::Int) = DiagEuclideanMetric(T, d)
make_metric(i::Val{:unit}, T::Type, d::Int) = UnitEuclideanMetric(T, d)
make_metric(i::Val{:dense}, T::Type, d::Int) = DenseEuclideanMetric(T, d)
function make_metric(spl::AbstractHMCSampler, logdensity)
d = LogDensityProblems.dimension(logdensity)
T = sampler_eltype(spl)
return make_metric(spl.metric, T, d)
end
#########
function make_adaptor(spl::NUTS, metric::AbstractMetric, integrator::AbstractIntegrator)
return StanHMCAdaptor(MassMatrixAdaptor(metric), StepSizeAdaptor(spl.δ, integrator))
end
function make_adaptor(spl::HMCDA, metric::AbstractMetric, integrator::AbstractIntegrator)
return StepSizeAdaptor(spl.δ, integrator)
end
function make_adaptor(spl::HMC, metric::AbstractMetric, integrator::AbstractIntegrator)
return NoAdaptation()
end
function make_adaptor(
spl::HMCSampler,
metric::AbstractMetric,
integrator::AbstractIntegrator,
)
return spl.adaptor
end
#########
function make_kernel(spl::NUTS, integrator::AbstractIntegrator)
return HMCKernel(Trajectory{MultinomialTS}(integrator, GeneralisedNoUTurn()))
end
function make_kernel(spl::HMC, integrator::AbstractIntegrator)
return HMCKernel(Trajectory{EndPointTS}(integrator, FixedNSteps(spl.n_leapfrog)))
end
function make_kernel(spl::HMCDA, integrator::AbstractIntegrator)
return HMCKernel(Trajectory{EndPointTS}(integrator, FixedIntegrationTime(spl.λ)))
end
function make_kernel(spl::HMCSampler, integrator::AbstractIntegrator)
return spl.κ
end