-
Notifications
You must be signed in to change notification settings - Fork 56
/
replay_buffer.py
100 lines (77 loc) · 3.44 KB
/
replay_buffer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
import numpy as np
import random
def sample_n_unique(sampling_f, n):
res = []
while len(res) < n:
candidate = sampling_f()
if candidate not in res:
res.append(candidate)
return res
class ReplayBuffer(object):
def __init__(self, size, frame_history_len):
super().__init__()
self.size = size
self.frame_history_len = frame_history_len
self.next_idx = 0
self.num_in_buffer = 0
self.obs = None
self.action = None
self.reward = None
self.done = None
def can_sample(self, batch_size):
return batch_size + 1 <= self.num_in_buffer
def _encode_sample(self, idxes):
obs_batch = np.concatenate([self._encode_observation(idx)[None] for idx in idxes], 0)
act_batch = self.action[idxes]
rew_batch = self.reward[idxes]
next_obs_batch = np.concatenate([self._encode_observation(idx + 1)[None] for idx in idxes], 0)
done_mask = np.array([1.0 if self.done[idx] else 0.0 for idx in idxes], dtype=np.float32)
return obs_batch, act_batch, rew_batch, next_obs_batch, done_mask
def sample(self, batch_size):
assert self.can_sample(batch_size)
idxes = sample_n_unique(lambda: random.randint(0, self.num_in_buffer - 2), batch_size)
return self._encode_sample(idxes)
def encode_recent_observation(self):
assert self.num_in_buffer > 0
return self._encode_observation((self.next_idx - 1) % self.size)
def _encode_observation(self, idx):
end_idx = idx + 1
start_idx = end_idx - self.frame_history_len
if len(self.obs.shape)==2:
return self.obs[end_idx-1]
if start_idx < 0 and self.num_in_buffer != self.size:
start_idx = 0
for idx in range(start_idx, end_idx-1):
if self.done[idx % self.size]:
start_idx = idx + 1
missing_context = self.frame_history_len - (end_idx - start_idx)
if start_idx < 0 or missing_context > 0:
frames = [np.zeros_like(self.obs[0]) for _ in range(missing_context)]
for idx in range(start_idx, end_idx):
frames.append(self.obs[idx % self.size])
return np.concatenate(frames, 0)
else:
img_h, img_w = self.obs.shape[2], self.obs.shape[3]
return self.obs[start_idx:end_idx].reshape(-1, img_h, img_w)
def store_frame(self, frame):
# if observation is an image...
if len(frame.shape) > 1:
# transpose image frame into c, h, w instead of h, w, c
#print(frame.shape)
#print(frame.type)
frame = frame.transpose(2, 0, 1)
#print(frame.shape)
if self.obs is None:
self.obs = np.empty([self.size] + list(frame.shape), dtype=np.uint8)
self.action = np.empty([self.size], dtype=np.int32)
self.reward = np.empty([self.size], dtype=np.float32)
self.done = np.empty([self.size], dtype=np.bool_)
self.obs[self.next_idx] = frame
ret = self.next_idx
self.next_idx = (self.next_idx + 1) % self.size
self.num_in_buffer = min(self.size, self.num_in_buffer + 1)
return ret
def store_effect(self, idx, action, reward, done):
self.action[idx] = action
self.reward[idx] = reward
self.done[idx] = done