Skip to content

Arabic nested named entity recognition

License

Notifications You must be signed in to change notification settings

TunyTrinh/ArabicNER

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

67 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Wojood - Nested Arabic NER

Wojood is a corpus for Arabic nested Named Entity Recognition (NER). Nested entities occur when one entity mention is embedded inside another entity mention. 550K tokens (MSA and dialect) This repo contains the source-code to train Wojood nested NER.

Online Demo

You can try our model using the demo link below

https://ontology.birzeit.edu/Wojood/

Wojood Corpus

A corpus and model for nested Arabic Named Entity Recognition Version: 1.0 (updated on 20/1/2022)

Wojood consists of about 550K tokens (MSA and dialect) that are manually annotated with 21 entity types (e.g., person, organization, location, event, date, etc). It covers multiple domains and was annotated with nested entities. The corpus contains about 75K entities and 22.5% of which are nested. A nested named entity recognition (NER) model based on BERT was trained (F1-score 88.4%).

Corpus size: 550K tokens (MSA and dialects)

Richness: 21 entity classes, contains ~75K entities and 22.5% of them are nested entities

Domains: Media, History, Culture, Health, Finance, ICT, Law, Elections, Politics, Migration, Terrorism, social media

Inter-annotator agreement: 97.9% (Cohen's Kappa)

NER Model: AraBERTV2 (88.4% F1-score)

Entity Classes (21):
PERS (person) EVENT CARDINAL
NORP (group of people) DATE ORDINAL
OCC (occupation) TIME PERCENT
ORG (organization) LANGUAGE QUANTITY
GPE (geopolitical entity) WEBSITE UNIT
LOC (geographical location) LAW MONEY
FAC (facility: landmarks places) PRODUCT CURR (currency)

Please email Prof. Jarrar (mjarrar AT birzeit.edu) for the annotation guidelines

Corpus Download

A sample data is available in the data directory. But the entire Wojood NER corpus is available to download upon request for academic and commercial use. Request to download Wojood (corpus and the model).

https://ontology.birzeit.edu/Wojood/

Model Download

huggingface: https://huggingface.co/SinaLab/ArabicNER-Wojood

Requirements

At this point, the code is compatible with Python 3.10.6 and torchtext==0.14.0.

Clone this repo

git clone https://github.com/SinaLab/ArabicNER.git

This package has dependencies on multiple Python packages. It is recommended to Conda to create a new environment that mimics the same environment the model was trained in. Provided in this repo environment.yml from which you can create a new conda environment using the command below.

conda env create -f environment.yml

Update your PYTHONPATH to point to ArabicNER package

export PYTHONPATH=PYTHONPATH:/path/to/ArabicNER

Model Training

Argument for model traning are listed below. Note that some arguments including data_config, trainer_config, network_config, optimizer, lr_scheduler and loss take as input JSON configuration (see examples below).

usage: train.py [-h] --output_path OUTPUT_PATH --train_path TRAIN_PATH
    --val_path VAL_PATH --test_path TEST_PATH
    [--bert_model BERT_MODEL] [--gpus GPUS [GPUS ...]]
    [--log_interval LOG_INTERVAL] [--batch_size BATCH_SIZE]
    [--num_workers NUM_WORKERS] [--data_config DATA_CONFIG]
    [--trainer_config TRAINER_CONFIG]
    [--network_config NETWORK_CONFIG] [--optimizer OPTIMIZER]
    [--lr_scheduler LR_SCHEDULER] [--loss LOSS] [--overwrite]
    [--seed SEED]

optional arguments:
    -h, --help            show this help message and exit
    --output_path OUTPUT_PATH
        Output path (default: None)
    --train_path TRAIN_PATH
        Path to training data (default: None)
    --val_path VAL_PATH   
        Path to training data (default: None)
    --test_path TEST_PATH
        Path to training data (default: None)
    --bert_model BERT_MODEL
        BERT model (default: aubmindlab/bert-base-arabertv2)
    --gpus GPUS [GPUS ...]
        GPU IDs to train on (default: [0])
    --log_interval LOG_INTERVAL
        Log results every that many timesteps (default: 10)
    --batch_size BATCH_SIZE
        Batch size (default: 32)
    --num_workers NUM_WORKERS
        Dataloader number of workers (default: 0)
    --data_config DATA_CONFIG
        Dataset configurations (default: {"fn":
            "arabiner.data.datasets.DefaultDataset", "kwargs":
            {"max_seq_len": 512}})
    --trainer_config TRAINER_CONFIG
        Trainer configurations (default: {"fn":
        "arabiner.trainers.BertTrainer", "kwargs":
        {"max_epochs": 50}})
    --network_config NETWORK_CONFIG
        Network configurations (default: {"fn":
        "arabiner.nn.BertSeqTagger", "kwargs": {"dropout":
        0.1, "bert_model": "aubmindlab/bert-base-arabertv2"}})
    --optimizer OPTIMIZER
        Optimizer configurations (default: {"fn":
        "torch.optim.AdamW", "kwargs": {"lr": 0.0001}})
    --lr_scheduler LR_SCHEDULER
        Learning rate scheduler configurations (default:
            {"fn": "torch.optim.lr_scheduler.ExponentialLR",
            "kwargs": {"gamma": 1}})
    --loss LOSS           Loss function configurations (default: {"fn":
        "torch.nn.CrossEntropyLoss", "kwargs": {}})
    --overwrite           Overwrite output directory (default: False)
    --seed SEED           Seed for random initialization (default: 1)

Training nested NER example

In the case of nested NER we pass NestedTagsDataset to --data_config, BertNestedTrainer to --trainer_config, and BertNestedTagger to --network_config.

python train.py \
    --output_path /path/to/output/dir \
    --train_path /path/to/train.txt \
    --val_path /path/to/val.txt \
    --test_path /path/to/test.txt \
    --batch_size 8 \
    --data_config '{"fn":"arabiner.data.datasets.NestedTagsDataset","kwargs":{"max_seq_len":512}}' \
    --trainer_config '{"fn":"arabiner.trainers.BertNestedTrainer","kwargs":{"max_epochs":50}}' \
    --network_config '{"fn":"arabiner.nn.BertNestedTagger","kwargs":{"dropout":0.1,"bert_model":"aubmindlab/bert-base-arabertv2"}}' \
    --optimizer '{"fn":"torch.optim.AdamW","kwargs":{"lr":0.0001}}'

Training flat NER example

In the case of flat NER we pass DefaultDataset to --data_config, BertTrainer to --trainer_config, and BertSeqTagger to --network_config.

python train.py \
    --output_path /path/to/output/dir \
    --train_path /path/to/train.txt \
    --val_path /path/to/val.txt \
    --test_path /path/to/test.txt \
    --batch_size 8 \
    --data_config '{"fn":"arabiner.data.datasets.DefaultDataset","kwargs":{"max_seq_len":512}}' \
    --trainer_config '{"fn":"arabiner.trainers.BertTrainer","kwargs":{"max_epochs":50}}' \
    --network_config '{"fn":"arabiner.nn.BertSeqTagger","kwargs":{"dropout":0.1,"bert_model":"aubmindlab/bert-base-arabertv2"}}' \
    --optimizer '{"fn":"torch.optim.AdamW","kwargs":{"lr":0.0001}}'

Inference

Inference is the process of using a pre-trained model to perform tagging on a new text. To do that, we will need the following:

Model

Note that the model has the following structure and it is important to keep the same structure for inference to work.

.
├── args.json
├── checkpoints
├── predictions.txt
├── tag_vocab.pkl
├── tensorboard
└── train.log

Inference script

provided in the bin directory infer.py script that performs inference.

The infer.py has the following parameters:

usage: infer.py [-h] --model_path MODEL_PATH --text
                TEXT [--batch_size BATCH_SIZE] 

optional arguments:
  -h, --help            show this help message and exit
  --model_path MODEL_PATH
                        Model path for a pre-trained model, for this we you need to download the checkpoint from this repo  (default: None)
  --text TEXT           Text or sequence to tag, segments will be identified based on periods (default: None)
  --batch_size BATCH_SIZE
                        Batch size (default: 32)

Example inference command:

python -u /path/to/ArabiNER/arabiner/bin/infer.py
       --model_path /path/to/model
       --text "وثائق نفوس شخصية من الفترة العثمانية للسيد نعمان عقل"

Eval script

Optionally, there is eval.py script in bin directory to evaluate NER dataset with ground truth data.

usage: eval.py [-h] --output_path OUTPUT_PATH --model_path MODEL_PATH
                --data_paths DATA_PATHS [DATA_PATHS ...] [--batch_size BATCH_SIZE]

optional arguments:
    -h, --help            show this help message and exit
    --output_path OUTPUT_PATH
        Path to save results (default: None)
    --model_path MODEL_PATH
        Model path (default: None)
    --data_paths DATA_PATHS [DATA_PATHS ...]
        Text or sequence to tag, this is in same format as
        training data with 'O' tag for all tokens (default: None)
    --batch_size BATCH_SIZE
        Batch size (default: 32)

Credits

This research is partially funded by the Palestinian Higher Council for Innovation and Excellence.

Citation

Mustafa Jarrar, Mohammed Khalilia, Sana Ghanem: Wojood: Nested Arabic Named Entity Corpus and Recognition using BERT. In Proceedings of the International Conference on Language Resources and Evaluation (LREC 2022), Marseille, France. 2022

About

Arabic nested named entity recognition

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%