Skip to content

Latest commit

 

History

History
93 lines (71 loc) · 3.13 KB

README.md

File metadata and controls

93 lines (71 loc) · 3.13 KB

MemSeg

Unofficial Re-implementation for MemSeg: A semi-supervised method for image surface defect detection using differences and commonalities

Environments

  • Docker image: nvcr.io/nvidia/pytorch:20.12-py3
anomalib==0.3.7
opencv-python==4.6.0
einops==0.5.0
timm==0.5.4
wandb==0.12.17

Process

1. Anomaly Simulation Strategy

2. Model Process

Run

python main.py --yaml_config ./configs/capsule.yaml

Demo

voila "[demo] model inference.ipynb" --port ${port} --Voila.ip ${ip}

Results

TBD

target AUROC-image AUROC-pixel AUPRO-pixel
0 leather 100 93.93 90.44
1 wood 99.12 92.71 84.96
2 carpet 91.33 91.32 78.34
3 capsule 95.77 88.55 81.56
4 cable 92.41 81.77 64.45
5 metal_nut 99.9 71.13 79.92
6 tile 100 98.1 95.41
7 grid 96.57 76.78 59.63
8 bottle 99.92 95 89.95
9 zipper 97.58 93.76 83.94
10 transistor 97.71 71.78 66.86
11 hazelnut 95.29 91.73 87.83
12 pill 83.69 91.91 72.62
Average 96.1 87.57 79.69

Citation

@article{DBLP:journals/corr/abs-2205-00908,
  author    = {Minghui Yang and
               Peng Wu and
               Jing Liu and
               Hui Feng},
  title     = {MemSeg: {A} semi-supervised method for image surface defect detection
               using differences and commonalities},
  journal   = {CoRR},
  volume    = {abs/2205.00908},
  year      = {2022},
  url       = {https://doi.org/10.48550/arXiv.2205.00908},
  doi       = {10.48550/arXiv.2205.00908},
  eprinttype = {arXiv},
  eprint    = {2205.00908},
  timestamp = {Tue, 03 May 2022 15:52:06 +0200},
  biburl    = {https://dblp.org/rec/journals/corr/abs-2205-00908.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}