-
Notifications
You must be signed in to change notification settings - Fork 21
/
arguments.py
executable file
·272 lines (226 loc) · 12.4 KB
/
arguments.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
# coding=utf-8
# Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""argparser configuration"""
import argparse
import os
import torch
import deepspeed
def add_model_config_args(parser: argparse.ArgumentParser):
"""Model arguments"""
group = parser.add_argument_group('model', 'model configuration')
group.add_argument('--model-config', type=str)
group.add_argument('--cpu-optimizer', action='store_true',
help='Run optimizer on CPU')
group.add_argument('--cpu_torch_adam', action='store_true',
help='Use Torch Adam as optimizer on CPU.')
return parser
def add_fp16_config_args(parser: argparse.ArgumentParser):
"""Mixed precision arguments."""
group = parser.add_argument_group('fp16', 'fp16 configurations')
group.add_argument('--fp16', action='store_true',
help='Run model in fp16 mode')
group.add_argument('--fp32-embedding', action='store_true',
help='embedding in fp32')
group.add_argument('--fp32-layernorm', action='store_true',
help='layer norm in fp32')
group.add_argument('--fp32-tokentypes', action='store_true',
help='embedding token types in fp32')
group.add_argument('--fp32-allreduce', action='store_true',
help='all-reduce in fp32')
group.add_argument('--hysteresis', type=int, default=2,
help='hysteresis for dynamic loss scaling')
group.add_argument('--loss-scale', type=float, default=None,
help='Static loss scaling, positive power of 2 '
'values can improve fp16 convergence. If None, dynamic'
'loss scaling is used.')
group.add_argument('--loss-scale-window', type=float, default=1000,
help='Window over which to raise/lower dynamic scale')
group.add_argument('--min-scale', type=float, default=1,
help='Minimum loss scale for dynamic loss scale')
return parser
def add_training_args(parser: argparse.ArgumentParser):
"""Training arguments."""
group = parser.add_argument_group('train', 'training configurations')
group.add_argument('--prompt-tune', action="store_true")
group.add_argument('--prompt-config', type=str, default=None)
group.add_argument('--do-train', action="store_true")
group.add_argument('--do-valid', action="store_true")
group.add_argument('--do-eval', action="store_true")
group.add_argument('--do-infer', action="store_true")
group.add_argument('--train-ratio',type=float, default=1.0)
group.add_argument('--train-num',type=int, default=-1)
group.add_argument('--dev-ratio',type=float, default=1.0)
group.add_argument('--dev-num',type=int, default=-1)
group.add_argument('--test-ratio',type=float, default=1.0)
group.add_argument('--test-num',type=int, default=-1)
group.add_argument('--epochs', type=int, default=1)
group.add_argument('--batch-size', type=int, default=4,
help='Data Loader batch size')
group.add_argument('--gradient-accumulation-steps', type=int, default=1)
group.add_argument('--weight-decay', type=float, default=0.01,
help='weight decay coefficient for L2 regularization')
group.add_argument('--checkpoint-activations', action='store_true',
help='checkpoint activation to allow for training '
'with larger models and sequences')
group.add_argument('--checkpoint-num-layers', type=int, default=1,
help='chunk size (number of layers) for checkpointing')
group.add_argument('--num-checkpoints', type=int, default=24, help="For activation checkpointing")
group.add_argument('--deepspeed-activation-checkpointing', action='store_true',
help='uses activation checkpointing from deepspeed')
group.add_argument('--clip-grad', type=float, default=1.0,
help='gradient clipping')
group.add_argument('--train-iters', type=int, default=1000000,
help='total number of iterations to train over all training runs')
group.add_argument('--log-interval', type=int, default=100,
help='report interval')
group.add_argument('--max-save', type=int, default=-1)
group.add_argument('--seed', type=int, default=1234,
help='random seed')
# Batch prodecuer arguments
group.add_argument('--reset-position-ids', action='store_true',
help='Reset posistion ids after end-of-document token.')
group.add_argument('--reset-attention-mask', action='store_true',
help='Reset self attention maske after '
'end-of-document token.')
# Learning rate.
group.add_argument('--lr-decay-iters', type=int, default=None,
help='number of iterations to decay LR over,'
' If None defaults to `--train-iters`*`--epochs`')
group.add_argument('--lr-decay-style', type=str, default='linear',
choices=['constant', 'linear', 'cosine', 'exponential', 'noam'],
help='learning rate decay function')
group.add_argument('--lr', type=float, default=1.0e-4,
help='initial learning rate')
group.add_argument('--warmup', type=float, default=0.01,
help='percentage of data to warmup on (.01 = 1% of all '
'training iters). Default 0.01')
# model checkpointing
group.add_argument('--save', type=str, default=None,
help='Output directory to save checkpoints to.')
group.add_argument('--save-interval', type=int, default=5000,
help='number of iterations between saves')
group.add_argument('--no-save-optim', action='store_true',
help='Do not save current optimizer.')
group.add_argument('--no-save-rng', action='store_true',
help='Do not save current rng state.')
group.add_argument('--load', type=str, default=None,
help='Path to a directory containing a model checkpoint.')
group.add_argument('--load-oprimizer-states', action="store_true")
group.add_argument('--load-lr-scheduler-states', action="store_true")
group.add_argument('--no-load-optim', action='store_true',
help='Do not load optimizer when loading checkpoint.')
group.add_argument('--no-load-rng', action='store_true',
help='Do not load rng state when loading checkpoint.')
group.add_argument('--finetune', action='store_true',
help='Load model for finetuning. Do not load optimizer '
'or rng state from checkpoint and set iteration to 0. '
'Assumed when loading a release checkpoint.')
group.add_argument('--resume-dataloader', action='store_true',
help='Resume the dataloader when resuming training. '
'Does not apply to tfrecords dataloader, try resuming'
'with a different seed in this case.')
group.add_argument('--log-file')
# distributed training args
group.add_argument('--distributed-backend', default='nccl',
help='which backend to use for distributed '
'training. One of [gloo, nccl]')
group.add_argument('--local_rank', type=int, default=None,
help='local rank passed from distributed launcher')
return parser
def add_evaluation_args(parser: argparse.ArgumentParser):
"""Evaluation arguments."""
group = parser.add_argument_group('validation', 'validation configurations')
group.add_argument('--eval-batch-size', type=int, default=None,
help='Data Loader batch size for evaluation datasets.'
'Defaults to `--batch-size`')
group.add_argument('--eval-iters', type=int, default=100,
help='number of iterations to run for evaluation'
'validation/test for')
group.add_argument('--eval-interval', type=int, default=1000,
help='interval between running evaluation on validation set')
return parser
def add_text_generate_args(parser: argparse.ArgumentParser):
"""Text generate arguments."""
group = parser.add_argument_group('Text generation', 'configurations')
group.add_argument("--temperature", type=float, default=1.0)
group.add_argument("--top-p", type=float, default=None)
group.add_argument("--top-k", type=int, default=None)
group.add_argument("--out-seq-length", type=int, default=256)
return parser
def add_data_args(parser: argparse.ArgumentParser):
"""Train/valid/test data arguments."""
group = parser.add_argument_group('data', 'data configurations')
group.add_argument('--model-parallel-size', type=int, default=1,
help='size of the model parallel.')
group.add_argument('--data-path', type=str, default=None,
help='Path to combined dataset to split.')
group.add_argument('--data-ext', type=str, default=".json")
group.add_argument('--data-name', type=str)
group.add_argument('--data-prefix', type=str, default=None)
group.add_argument('--num-workers', type=int, default=2,
help="""Number of workers to use for dataloading""")
group.add_argument('--tokenizer-path', type=str, default='tokenizer.model',
help='path used to save/load sentencepiece tokenization '
'models')
group.add_argument('--seq-length', type=int, default=512)
group.add_argument('--enc-seq-length', type=int, default=512,
help="Maximum sequence length to process")
group.add_argument('--dec-seq-length', type=int, default=512,
help="Maximum sequence length to process")
return parser
def get_args():
"""Parse all the args."""
parser = argparse.ArgumentParser(description='PyTorch BERT Model')
parser = add_model_config_args(parser)
parser = add_fp16_config_args(parser)
parser = add_training_args(parser)
parser = add_evaluation_args(parser)
parser = add_text_generate_args(parser)
parser = add_data_args(parser)
# Include DeepSpeed configuration arguments
parser = deepspeed.add_config_arguments(parser)
args = parser.parse_args()
if not args.data_path:
print('WARNING: No training data specified')
args.cuda = torch.cuda.is_available()
args.rank = int(os.getenv('RANK', '0'))
args.world_size = int(os.getenv("WORLD_SIZE", '1'))
if os.getenv('OMPI_COMM_WORLD_LOCAL_RANK'):
# We are using (OpenMPI) mpirun for launching distributed data parallel processes
local_rank = int(os.getenv('OMPI_COMM_WORLD_LOCAL_RANK'))
local_size = int(os.getenv('OMPI_COMM_WORLD_LOCAL_SIZE'))
# Possibly running with Slurm
num_nodes = int(os.getenv('SLURM_JOB_NUM_NODES', '1'))
nodeid = int(os.getenv('SLURM_NODEID', '0'))
args.local_rank = local_rank
args.rank = nodeid*local_size + local_rank
args.world_size = num_nodes*local_size
args.model_parallel_size = min(args.model_parallel_size, args.world_size)
if args.rank == 0:
print('using world size: {} and model-parallel size: {} '.format(
args.world_size, args.model_parallel_size))
args.dynamic_loss_scale = False
if args.loss_scale is None:
args.dynamic_loss_scale = True
if args.rank == 0:
print(' > using dynamic loss scaling')
# The args fp32_* or fp16_* meant to be active when the
# args fp16 is set. So the default behaviour should all
# be false.
if not args.fp16:
args.fp32_embedding = False
args.fp32_tokentypes = False
args.fp32_layernorm = False
return args