This repository has been archived by the owner on Jul 26, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 75
/
cluster.py
474 lines (424 loc) · 16.4 KB
/
cluster.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
'''
Copyright (c) 2017-present, Facebook, Inc.
All rights reserved.
This source code is licensed under the BSD-style license found in the
LICENSE file in the root directory of this source tree. An additional grant
of patent rights can be found in the PATENTS file in the same directory.
'''
import os
from os import path
from glob import glob
import argparse
import multiprocessing
import time
import traceback
import math
import numpy as np
from sklearn.cluster import MeanShift, estimate_bandwidth
from itertools import cycle
'''
I do something like:
find path/unit_loc_dump/10 -name 'TL_*.rep' |xargs -n1 -I% -P10 python cluster.py -i % -o path/battles/cluster/10/ -x 200 -y 200 -t 20 -b 0.5
'''
parser = argparse.ArgumentParser(description='Cluster some starcraft dumped replays. Each t is actually 3 frames combined')
parser.add_argument('-i', '--input', required=True, help='input glob')
parser.add_argument('-o', '--output', required=True, help='output folder')
# for -x, -y, -t, if you have none of --mrel, --trel, or --unit, then it behaves
# like division: x /= (args.x) is done. If you do have one of the --*rel or
# --unit options, instead it does x *= (args.x)
parser.add_argument('-x', '--x_scale', default=1, type=float, help='scale x axis, x /= x_scale')
parser.add_argument('-y', '--y_scale', default=1, type=float, help='scale y ayis, y /= y_scale')
parser.add_argument('-t', '--t_scale', default=1, type=float, help='scale t atis, t /= t_scale')
parser.add_argument('-b', '--bandwidth', default=-1, type=float, help='Bandwidth for mean shift, use a negative number to force autodetection')
parser.add_argument('--mrel', action='store_true', default=False, help='x_scale and y_scale accepts a decimal, and x and y are scaled to 1')
parser.add_argument('--trel', action='store_true', default=False, help='t_scale accepts a decimal, and t is scaled to 1')
parser.add_argument('--unit', action='store_true', default=False,
help='Use N(0, 1) normalization, incomaptible with mrel and trel.'
'--{x,y,t}_scale are used as decimals')
parser.add_argument('--min_deaths', default=3, type=int, help='How many deaths in each cluster is a "battle"')
# This parameter is pretty sensitive, I found that 0.5 is too high. I haven't
# experimented whether it's too low or the averaging centers approach is too
# heavy-handed.
parser.add_argument('--merge_sim', default=0.4, type=float,
help='If two bounding boxes are more than this similar (via Jaccard), merge them')
parser.add_argument('--bound_with_deaths', default=False, action='store_true',
help='Build bounding boxes with just deaths')
parser.add_argument('--t_padding', default=2, type=float,
help='Seconds before and after deaths to pad to')
parser.add_argument('-s', '--show', action='store_true', default=False, help='Whether to show plot or not')
args = parser.parse_args()
import matplotlib
if not args.show:
matplotlib.use('Agg')
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
# Only the combat units
id2unit = [
("Terran_Marine", "0"),
("Terran_Ghost", "1"),
("Terran_Vulture", "2"),
("Terran_Goliath", "3"),
("Terran_Siege_Tank_Tank_Mode", "5"),
("Terran_SCV", "7"),
("Terran_Wraith", "8"),
("Terran_Science_Vessel", "9"),
("Terran_Dropship", "11"),
("Terran_Battlecruiser", "12"),
("Terran_Vulture_Spider_Mine", "13"),
("Terran_Nuclear_Missile", "14"),
("Terran_Civilian", "15"),
("Terran_Siege_Tank_Siege_Mode", "30"),
("Terran_Firebat", "32"),
#("Spell_Scanner_Sweep", "33"),
("Terran_Medic", "34"),
# ("Zerg_Larva", "35"),
# ("Zerg_Egg", "36"),
("Zerg_Zergling", "37"),
("Zerg_Hydralisk", "38"),
("Zerg_Ultralisk", "39"),
("Zerg_Broodling", "40"),
("Zerg_Drone", "41"),
("Zerg_Overlord", "42"),
("Zerg_Mutalisk", "43"),
("Zerg_Guardian", "44"),
("Zerg_Queen", "45"),
("Zerg_Defiler", "46"),
("Zerg_Scourge", "47"),
("Zerg_Infested_Terran", "50"),
("Terran_Valkyrie", "58"),
("Zerg_Cocoon", "59"),
("Protoss_Corsair", "60"),
("Protoss_Dark_Templar", "61"),
("Zerg_Devourer", "62"),
("Protoss_Dark_Archon", "63"),
("Protoss_Probe", "64"),
("Protoss_Zealot", "65"),
("Protoss_Dragoon", "66"),
("Protoss_High_Templar", "67"),
("Protoss_Archon", "68"),
("Protoss_Shuttle", "69"),
("Protoss_Scout", "70"),
("Protoss_Arbiter", "71"),
("Protoss_Carrier", "72"),
# ("Protoss_Interceptor", "73"),
("Protoss_Reaver", "83"),
("Protoss_Observer", "84"),
# ("Protoss_Scarab", "85"),
# ("Critter_Rhynadon", "89"),
# ("Critter_Bengalaas", "90"),
# ("Critter_Scantid", "93"),
# ("Critter_Kakaru", "94"),
# ("Critter_Ragnasaur", "95"),
# ("Critter_Ursadon", "96"),
("Zerg_Lurker_Egg", "97"),
("Zerg_Lurker", "103"),
# ("Spell_Disruption_Web", "105"),
# ("Terran_Command_Center", "106"),
# ("Terran_Comsat_Station", "107"),
# ("Terran_Nuclear_Silo", "108"),
# ("Terran_Supply_Depot", "109"),
# ("Terran_Refinery", "110"),
# ("Terran_Barracks", "111"),
# ("Terran_Academy", "112"),
# ("Terran_Factory", "113"),
# ("Terran_Starport", "114"),
# ("Terran_Control_Tower", "115"),
# ("Terran_Science_Facility", "116"),
# ("Terran_Covert_Ops", "117"),
# ("Terran_Physics_Lab", "118"),
# ("Terran_Machine_Shop", "120"),
# ("Terran_Engineering_Bay", "122"),
# ("Terran_Armory", "123"),
("Terran_Missile_Turret", "124"),
("Terran_Bunker", "125"),
# ("Zerg_Infested_Command_Center", "130"),
# ("Zerg_Hatchery", "131"),
# ("Zerg_Lair", "132"),
# ("Zerg_Hive", "133"),
# ("Zerg_Nydus_Canal", "134"),
# ("Zerg_Hydralisk_Den", "135"),
# ("Zerg_Defiler_Mound", "136"),
# ("Zerg_Greater_Spire", "137"),
# ("Zerg_Queens_Nest", "138"),
# ("Zerg_Evolution_Chamber", "139"),
# ("Zerg_Ultralisk_Cavern", "140"),
# ("Zerg_Spire", "141"),
# ("Zerg_Spawning_Pool", "142"),
("Zerg_Creep_Colony", "143"),
("Zerg_Spore_Colony", "144"),
("Zerg_Sunken_Colony", "146"),
# ("Zerg_Extractor", "149"),
# ("Protoss_Nexus", "154"),
# ("Protoss_Robotics_Facility", "155"),
# ("Protoss_Pylon", "156"),
# ("Protoss_Assimilator", "157"),
# ("Protoss_Observatory", "159"),
# ("Protoss_Gateway", "160"),
# ("Protoss_Photon_Cannon", "162"),
# ("Protoss_Citadel_of_Adun", "163"),
# ("Protoss_Cybernetics_Core", "164"),
# ("Protoss_Templar_Archives", "165"),
# ("Protoss_Forge", "166"),
# ("Protoss_Stargate", "167"),
# ("Protoss_Fleet_Beacon", "169"),
# ("Protoss_Arbiter_Tribunal", "170"),
# ("Protoss_Robotics_Support_Bay", "171"),
("Protoss_Shield_Battery", "172"),
# ("Resource_Mineral_Field", "176"),
# ("Resource_Mineral_Field_Type_2", "177"),
# ("Resource_Mineral_Field_Type_3", "178"),
# ("Resource_Vespene_Geyser", "188"),
# ("Spell_Dark_Swarm", "202"),
]
id2unit = {int(b): a for a, b in id2unit}
badunits = np.array(list(id2unit.keys()))
def parse_file(fn):
with open(fn) as infile:
data = infile.readlines()
max_y, max_x, max_t = [int(x) for x in data[0].split(' ')]
data = [np.fromstring(d, dtype='int32', sep=' ').reshape(-1, 5) for d in data[1:] if d.strip() != ""]
data = [d[d[:, 0] != -1] for d in data]
data = [d[np.in1d(d[:, 2], badunits, True)] for d in data]
ids = [d[:, 1] for d in data]
deaths = [np.setdiff1d(x, y, assume_unique=True) for x, y in zip(ids[:-1], ids[1:])]
xyt = []
for t, (d, death) in enumerate(zip(data[:-1], deaths)):
dead = np.compress(np.in1d(d[:, 1], death), d, axis=0)
if dead.size > 0:
xyt.append(np.concatenate([dead[:, 3:], t * np.ones((death.size, 1))], axis=1))
if len(xyt) == 0:
return data, xyt, lambda x: x, lambda x: x, False, None
xyt = np.concatenate(xyt, axis=0)
if args.unit:
if args.mrel or args.trel:
raise ValueError("Cannot supply both --unit and one of --mrel or --trel")
mean = xyt.mean(axis=0)
std = xyt.std(axis=0) + 1e-2
xs, ys, ts = args.x_scale, args.y_scale, args.t_scale
if args.mrel:
xs /= max_x
ys /= max_y
elif not args.unit:
xs = 1 / xs
ys = 1 / ys
if args.trel:
ts /= max_t
elif not args.unit:
ts = 0.042 * 3 / ts # convert frames to seconds
scalar = np.array([xs, ys, ts])
def transform(xyt):
if args.unit:
xyt = (xyt - mean) / std
return xyt * scalar
teams = [d[:, 0] for d in data]
teams = np.unique(np.concatenate(teams))
def untransform(xyt):
if args.unit:
xyt = xyt * std + mean
return xyt / scalar
return data, transform(xyt), transform, untransform, teams.size <= 3, (max_x, max_y, max_t)
def drawbox(ax, rectangle, color='b', alpha=0.2):
x = rectangle[0:2]
y = rectangle[2:4]
z = rectangle[4:6]
for i in x:
Y, Z = np.meshgrid(y, z)
ax.plot_surface(i, Y, Z, alpha=alpha, color=color)
for i in y:
X, Z = np.meshgrid(x, z)
ax.plot_surface(X, i, Z, alpha=alpha, color=color)
for i in z:
X, Y = np.meshgrid(x, y)
ax.plot_surface(X, Y, i, alpha=alpha, color=color)
def cluster(arg):
infn, outfn = arg
outfn = outfn[:-4]
_cluster(infn, outfn)
'''
for i in range(10):
try:
_cluster(infn, outfn)
return
except:
traceback.print_exc()
try:
os.remove(outfn + '.lock')
except:
pass
time.sleep(1)
print("FAILED {} => {}".format(infn, outfn))
'''
def _cluster(infn, outfn):
if path.exists(outfn + '.lock') or path.exists(outfn + '.txt'):
return
open(outfn + '.lock', 'w').close()
print("doing " + infn)
data, xyt, transform, untransform, valid, maxes = parse_file(infn)
if not valid:
return
bandwidth = args.bandwidth
if bandwidth < 0:
bandwidth = estimate_bandwidth(xyt, quantile=0.2, n_samples=500)
ms = MeanShift(bandwidth=bandwidth, bin_seeding=True)
ms.fit(xyt)
centers = ms.cluster_centers_
radius = bandwidth
centers = untransform(centers)
radius = untransform(radius)
xyt = untransform(xyt)
labels = ms.labels_
labels_unique = np.unique(labels)
n_clusters_ = len(labels_unique)
few = np.bincount(labels) < args.min_deaths
extract_battles(outfn + '.txt', data, ms, maxes, xyt, transform, untransform)
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
colors = cycle('bgrcmykbgrcmykbgrcmykbgrcmyk')
for k, too_few in zip(range(n_clusters_), few):
my_members = labels == k
cluster_center = centers[k]
if too_few:
col = 'black'
else:
col = next(colors)
ax.scatter(cluster_center[0], cluster_center[1], cluster_center[2], 'o', c=col, s=100)
ax.scatter(xyt[my_members, 0], xyt[my_members, 1], xyt[my_members, 2], c=col)
if args.show:
plt.show()
plt.savefig(outfn + ".png")
plt.close(fig)
try:
os.remove(outfn + '.lock')
except:
pass
def radius_to_rect(center, x_radius, y_radius, maxes, before, after):
x_max, y_max, t_max = maxes
before = math.floor(max(0, before))
after = math.ceil(min(t_max, after))
xmin = center[0] - x_radius
xmin = max(0, min(xmin, x_max - 2 * x_radius))
xmax = center[0] + x_radius
xmax = min(x_max, max(2 * x_radius, xmax))
ymin = center[1] - y_radius
ymin = max(0, min(ymin, y_max - 2 * y_radius))
ymax = center[1] + y_radius
ymax = min(y_max, max(2 * y_radius, ymax))
xmin, xmax, ymin, ymax = [int(x) for x in [xmin, xmax, ymin, ymax]]
return (xmin, xmax, ymin, ymax, before, after)
def filter_rectangle(units, rectangle, maxes):
xmin, xmax, ymin, ymax, before, after = rectangle
units = np.concatenate(units[before:after])
fx = units[:, 3]
fy = units[:, 4]
return units[
(fx >= xmin) * (fx <= xmax) *
(fy >= ymin) * (fy <= ymax)]
def extract_battles(outfn, data, ms, maxes, deaths, transform, untransform,
x_radius=100, y_radius=100,
):
'''
Outputs a text file to `outfn`
Each battle is
xmin, xmax, ymin, ymax, tmin, tmax
list of units and counts for player 0
list of units and counts ids for player 1
repeated for every battle that occurs.
'''
max_x, max_y, max_t = maxes
if args.bound_with_deaths:
predict_with = deaths
else:
cdata = [np.concatenate([d, t * np.ones((d.shape[0], 1))], axis=1) for t, d in enumerate(data)]
cdata = np.concatenate(cdata)
predict_with = cdata[:, 3:]
predict_with = transform(predict_with)
x = ms.predict(predict_with)
labels = ms.labels_
few = np.bincount(labels) < args.min_deaths
labels_unique = np.unique(labels)
n_clusters_ = len(labels_unique)
out = []
rects = []
for k, too_few in zip(range(n_clusters_), few):
if too_few:
continue
center = ms.cluster_centers_[k]
my_members = x == k
units = predict_with[my_members]
times = units[:, -1]
if times.size == 0:
continue
unnormalized = untransform(((0, 0, times.min()), (0, 0, times.max())))
start = int(unnormalized[0, 2])
end = int(unnormalized[1, 2])
# x seconds before first death and x after last death
before = args.t_padding * 8
after = args.t_padding * 8
rectangle = radius_to_rect(untransform(center), x_radius, y_radius,
maxes, start - before, end + after)
rects.append((center, rectangle))
# Merge highly similar rectangles by averaging centers greedily
# Only stop when there are no possible merges left
i = 0
while i < len(rects) - 1:
length = len(rects)
j = i + 1
while j < len(rects):
c1, rect = rects[i]
xmin1, xmax1, ymin1, ymax1, tmin1, tmax1 = rect
c2, rect = rects[j]
xmin2, xmax2, ymin2, ymax2, tmin2, tmax2 = rect
A1 = (xmax1 - xmin1) * (ymax1 - ymin1) * (tmax1 - tmin1)
A2 = (xmax2 - xmin2) * (ymax2 - ymin2) * (tmax2 - tmin2)
A_intersect = (
max(0, min(xmax1, xmax2) - max(xmin1, xmin2)) *
max(0, min(ymax1, ymax2) - max(ymin1, ymin2)) *
max(0, min(tmax1, tmax2) - max(tmin1, tmin2))
)
if A_intersect / float(A1 + A2 - A_intersect) > args.merge_sim:
tmin = min(tmin1, tmin2)
tmax = max(tmax1, tmax2)
c = (c1 + c2) / 2 # weight this by unit number if results are bad
rect = radius_to_rect(c, x_radius, y_radius, maxes, tmin, tmax)
rects[i] = (c, rect)
del rects[j]
else:
j += 1
if len(rects) == length:
i += 1
else:
i = 0
for item in rects:
_, rectangle = item
filtered_units = filter_rectangle(data, rectangle, maxes)
team0 = filtered_units[:, 0] == 0
if not any(team0) or all(team0): # bad cluster
continue
t0 = filtered_units[team0]
t0 = t0[t0[:, 1].argsort()]
unique = np.diff(t0[:, 1], axis=0) > 0
unique = np.append(unique, True)
u0 = t0[unique]
bc0 = np.bincount(u0[:, 2])
t1 = filtered_units[np.logical_not(team0)]
t1 = t1[t1[:, 1].argsort()]
unique = np.diff(t1[:, 1], axis=0) > 0
unique = np.append(unique, True)
u1 = t1[unique]
bc1 = np.bincount(u1[:, 2])
out.append(",".join(str(x) for x in rectangle))
out.append(",".join(
"{}: {}".format(id2unit[id], c)
for id, c in zip(np.nonzero(bc0)[0], bc0[bc0 > 0]) if id in id2unit))
out.append(",".join(
"{}: {}".format(id2unit[id], c)
for id, c in zip(np.nonzero(bc1)[0], bc1[bc1 > 0]) if id in id2unit))
with open(outfn, 'w') as f:
f.write("\n".join(out))
return rects
if __name__ == "__main__":
files = glob(args.input)
os.makedirs(path.abspath(args.output), exist_ok=True)
# [cluster((fn, path.join(args.output, path.basename(fn)))) for fn in files]
p = multiprocessing.Pool()
p.map(cluster, [(fn, path.join(args.output, path.basename(fn))) for fn in files])