-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathprocessor.py
254 lines (211 loc) · 8.67 KB
/
processor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
# Copyright (C) 2016,2017 Marcus Soll
# Copyright (C) 2016,2017 Malte Vosgerau
#
# This file is part of ClassifyHub.
#
# ClassifyHub is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# ClassifyHub is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with ClassifyHub. If not, see <http://www.gnu.org/licenses/>.
import multiprocessing
import logging
import os
import utility
import github
import configserver
import queue
import sys
import classifier
##
# \brief Batch worker for parallel processing.
#
# \param queue_input multiprocessing.Queue containing github.Github objects for classification.
# \param queue_output multiprocessing.Queue where output is pushed into as (LABEL, GITHUB, COMBINED_DICT, DETAILED_DICT)
# tupel, where LABEL is a string containing the label, GITHUB is the classified repository as a
# github.Github object, COMBINED_DICT is a dict containing the combined prediction of all
# classifier as a dict {CLASS: PROBABILITY} and DETAILED_DICT contains the output of the single
# classifiers as a dict {NAME: {CLASS: PROBABILITY}}.
def _batch_worker(queue_input, queue_output):
classifiers = classifier.get_all_classifiers()
try:
while True:
data = queue_input.get(True, 1)
sum_results = utility.get_zero_class_dict()
classifier_results = dict()
for c in classifiers:
result = c.classify(data)
classifier_results[c.name()] = result
for key in sum_results.keys():
if key in result:
sum_results[key] += result[key] / len(classifiers)
queue_output.put((data, utility.get_best_class(sum_results), sum_results, classifier_results))
except queue.Empty:
sys.exit(0)
##
# \brief Learning worker for parallel processing.
#
# \param input List containing Tupel (GITHUB, CLASS), where GITHUB is the repository as a github.Github class and
# CLASS is the class label of the repository as a string.
# \param queue_classifier multiprocessing.Queue containing classifier objects for learning.
def _learning_worker(input, queue_classifier):
try:
while True:
c = queue_classifier.get(True, 1)
c.learn(input)
except queue.Empty:
sys.exit(0)
##
# \brief Parses a file and returns an array which can be used for batch processing.
#
# \param path Path of the file to parse.
# \return List containing github.Github objects corresponding to the input file.
def file_to_input(path):
if not os.path.exists(path):
logging.warning('Can not convert {}: file not existing'.format(path))
return []
data = []
try:
with open(path, 'r') as file:
for line in file:
line = line.strip()
if line == '':
continue
elif not utility.validate_url(line):
logging.warning('Line "{}" is not a valid url - skipping'.format(line))
else:
url_data = utility.get_dev_and_repo(line)
data += [github.Github(url_data[0], url_data[1])]
except:
logging.error('Error while converting file {}'.format(path))
return data
##
# Saves the processing results to a file.
#
# \param result List containing Tupel (GITHUB, CLASS), where GITHUB is the repository as a github.Github class and
# CLASS is the class label of the repository as a string.
# \param filename Target file path.
def result_to_file(result, filename):
try:
with open(filename, 'w') as file:
for r in result:
file.write('{} {}\n'.format(r[0].get_repo_url(), r[1]))
except:
logging.error('Can not save results to {}'.format(filename))
##
# \brief Parsed the files in a directory and returns input for learning.
#
# The directory has to contain one file with the name of each class ('DEV', 'HW', 'EDU', 'DOCS', 'WEB', 'DATA', 'OTHER')
# containing lines with repositories of that class.
#
# \param path Path to directory.
# \return List containing Tupel (GITHUB, CLASS), where GITHUB is the repository as a github.Github class and
# CLASS is the class label of the repository as a string.
def dir_to_learning(path):
if not os.path.isdir(path):
logging.warning('Can not convert {}: not a directory'.format(path))
return []
classes = utility.get_classes()
for file in classes:
if not os.path.exists(path + '/' + file):
logging.warning('Can not convert {}: file {} not existing'.format(path, path + '/' + file))
return []
input = []
for file in classes:
dataset = file_to_input(path + '/' + file)
for data in dataset:
input += [(data, file)]
return input
##
# \brief Runs the batch processing.
#
# Before running the batch processing (as well as after a scikit-learn upgrade) you first must run the learning function
# (not necessary in the same program).
#
# The batch processing is done in parallel.
# The parameters for the processing are taking from the global configuration.
#
# \param input List containing github.Github objects for classification.
# \return List containing Tupel (LABEL, GITHUB, COMBINED_DICT), where LABEL is the computed label
# and GITHUB is the repository as a github.Github class, COMBINED_DICT is a dict containing the
# combined prediction of all classifier as a dict {CLASS: PROBABILITY} and DETAILED_DICT contains the
# output of the single classifiers as a dict {NAME: {CLASS: PROBABILITY}}.
def batch(input):
if len(input) == 0:
return []
worker = multiprocessing.cpu_count()
if configserver.get('number_worker') > 0:
worker = configserver.get('number_worker')
queue_input = multiprocessing.Queue()
queue_output = multiprocessing.Queue()
for data in input:
queue_input.put_nowait(data)
processes = []
failed = []
for i in range(worker):
processes += [multiprocessing.Process(target=_batch_worker, args=(queue_input, queue_output))]
for process in processes:
process.start()
result = []
alive = True
# We have to pull all elements out of the queue or else the process might not terminate
# See https://docs.python.org/3/library/multiprocessing.html#programming-guidelines
while alive:
try:
while True:
result += [queue_output.get(True, 1)]
except queue.Empty:
pass
alive = False
for process in processes:
if process.is_alive():
alive = True
break
for process in processes:
process.join()
if not process.exitcode == 0:
failed += [process]
if len(failed) > 0:
logging.error('{} processes have failed - result might not be complete'.format(len(failed)))
# Try again just in case we missed some elements
try:
while True:
result += [queue_output.get(True, 1)]
except queue.Empty:
pass
if len(result) != len(input):
logging.error('Expected {} results, got {} - some results are missing'.format(len(input), len(result)))
return result
##
# \brief Runs the learning process.
#
# The results are stored to permanent memory and can be used later.
#
# \param input List containing Tupel (GITHUB, CLASS), where GITHUB is the repository as a github.Github class and
# CLASS is the class label of the repository as a string.
def learning(input):
worker = multiprocessing.cpu_count()
if configserver.get('number_worker') > 0:
worker = configserver.get('number_worker')
queue_classifier = multiprocessing.Queue()
for c in classifier.get_all_classifiers():
queue_classifier.put_nowait(c)
processes = []
failed = []
for i in range(worker):
processes += [multiprocessing.Process(target=_learning_worker, args=(input, queue_classifier))]
for process in processes:
process.start()
for process in processes:
process.join()
if not process.exitcode == 0:
failed += [process]
if len(failed) > 0:
logging.error('{} processes have failed - result might not be complete'.format(len(failed)))