-
Notifications
You must be signed in to change notification settings - Fork 25
/
preprocess.py
495 lines (437 loc) · 23.4 KB
/
preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
import json, os, re, copy, zipfile
import spacy
import ontology, utils
from collections import OrderedDict
from tqdm import tqdm
from config import global_config as cfg
from db_ops import MultiWozDB
from clean_dataset import clean_slot_values, clean_text
def get_db_values(value_set_path): # value_set.json, all the domain[slot] values in datasets
processed = {}
bspn_word = []
nlp = spacy.load('en_core_web_sm')
with open(value_set_path, 'r') as f: # read value set file in lower
value_set = json.loads(f.read().lower())
with open('db/ontology.json', 'r') as f: # read ontology in lower, all the domain-slot values
otlg = json.loads(f.read().lower())
for domain, slots in value_set.items(): # add all informable slots to bspn_word, create lists holder for values
processed[domain] = {}
bspn_word.append('['+domain+']')
for slot, values in slots.items():
s_p = ontology.normlize_slot_names.get(slot, slot)
if s_p in ontology.informable_slots[domain]:
bspn_word.append(s_p)
processed[domain][s_p] = []
for domain, slots in value_set.items(): # add all words of values of informable slots to bspn_word
for slot, values in slots.items():
s_p = ontology.normlize_slot_names.get(slot, slot)
if s_p in ontology.informable_slots[domain]:
for v in values:
_, v_p = clean_slot_values(domain, slot, v)
v_p = ' '.join([token.text for token in nlp(v_p)]).strip()
processed[domain][s_p].append(v_p)
for x in v_p.split():
if x not in bspn_word:
bspn_word.append(x)
for domain_slot, values in otlg.items(): # split domain-slots to domains and slots
domain, slot = domain_slot.split('-')
if domain == 'bus':
domain = 'taxi'
if slot == 'price range':
slot = 'pricerange'
if slot == 'book stay':
slot = 'stay'
if slot == 'book day':
slot = 'day'
if slot == 'book people':
slot = 'people'
if slot == 'book time':
slot = 'time'
if slot == 'arrive by':
slot = 'arrive'
if slot == 'leave at':
slot = 'leave'
if slot == 'leaveat':
slot = 'leave'
if slot not in processed[domain]: # add all slots and words of values if not already in processed and bspn_word
processed[domain][slot] = []
bspn_word.append(slot)
for v in values:
_, v_p = clean_slot_values(domain, slot, v)
v_p = ' '.join([token.text for token in nlp(v_p)]).strip()
if v_p not in processed[domain][slot]:
processed[domain][slot].append(v_p)
for x in v_p.split():
if x not in bspn_word:
bspn_word.append(x)
with open(value_set_path.replace('.json', '_processed.json'), 'w') as f:
json.dump(processed, f, indent=2) # save processed.json
with open('data/multi-woz-processed/bspn_word_collection.json', 'w') as f:
json.dump(bspn_word, f, indent=2) # save bspn_word
print('DB value set processed! ')
def preprocess_db(db_paths): # apply clean_slot_values to all dbs
dbs = {}
nlp = spacy.load('en_core_web_sm')
for domain in ontology.all_domains:
with open(db_paths[domain], 'r') as f: # for every db_domain, read json file
dbs[domain] = json.loads(f.read().lower())
for idx, entry in enumerate(dbs[domain]): # entry has information about slots of said domain
new_entry = copy.deepcopy(entry)
for key, value in entry.items(): # key = slot
if type(value) is not str:
continue
del new_entry[key]
key, value = clean_slot_values(domain, key, value)
tokenize_and_back = ' '.join([token.text for token in nlp(value)]).strip()
new_entry[key] = tokenize_and_back
dbs[domain][idx] = new_entry
with open(db_paths[domain].replace('.json', '_processed.json'), 'w') as f:
json.dump(dbs[domain], f, indent=2)
print('[%s] DB processed! '%domain)
class DataPreprocessor(object):
def __init__(self):
self.nlp = spacy.load('en_core_web_sm')
self.db = MultiWozDB(cfg.dbs) # load all processed dbs
data_path = 'data/multi-woz/annotated_user_da_with_span_full.json'
archive = zipfile.ZipFile(data_path + '.zip', 'r')
self.convlab_data = json.loads(archive.open(data_path.split('/')[-1], 'r').read().lower())
self.delex_sg_valdict_path = 'data/multi-woz-processed/delex_single_valdict.json'
self.delex_mt_valdict_path = 'data/multi-woz-processed/delex_multi_valdict.json'
self.ambiguous_val_path = 'data/multi-woz-processed/ambiguous_values.json'
self.delex_refs_path = 'data/multi-woz-processed/reference_no.json'
self.delex_refs = json.loads(open(self.delex_refs_path, 'r').read())
if not os.path.exists(self.delex_sg_valdict_path):
self.delex_sg_valdict, self.delex_mt_valdict, self.ambiguous_vals = self.get_delex_valdict()
else:
self.delex_sg_valdict = json.loads(open(self.delex_sg_valdict_path, 'r').read())
self.delex_mt_valdict = json.loads(open(self.delex_mt_valdict_path, 'r').read())
self.ambiguous_vals = json.loads(open(self.ambiguous_val_path, 'r').read())
self.vocab = utils.Vocab(cfg.vocab_size)
def delex_by_annotation(self, dial_turn):
u = dial_turn['text'].split()
span = dial_turn['span_info']
for s in span:
slot = s[1]
if slot == 'open':
continue
if ontology.da_abbr_to_slot_name.get(slot):
slot = ontology.da_abbr_to_slot_name[slot]
for idx in range(s[3], s[4]+1):
u[idx] = ''
try:
u[s[3]] = '[value_'+slot+']'
except:
u[5] = '[value_'+slot+']'
u_delex = ' '.join([t for t in u if t is not ''])
u_delex = u_delex.replace('[value_address] , [value_address] , [value_address]', '[value_address]')
u_delex = u_delex.replace('[value_address] , [value_address]', '[value_address]')
u_delex = u_delex.replace('[value_name] [value_name]', '[value_name]')
u_delex = u_delex.replace('[value_name]([value_phone] )', '[value_name] ( [value_phone] )')
return u_delex
def delex_by_valdict(self, text):
text = clean_text(text)
text = re.sub(r'\d{5}\s?\d{5,7}', '[value_phone]', text)
text = re.sub(r'\d[\s-]stars?', '[value_stars]', text)
text = re.sub(r'\$\d+|\$?\d+.?(\d+)?\s(pounds?|gbps?)', '[value_price]', text)
text = re.sub(r'tr[\d]{4}', '[value_id]', text)
text = re.sub(r'([a-z]{1}[\. ]?[a-z]{1}[\. ]?\d{1,2}[, ]+\d{1}[\. ]?[a-z]{1}[\. ]?[a-z]{1}|[a-z]{2}\d{2}[a-z]{2})', '[value_postcode]', text)
for value, slot in self.delex_mt_valdict.items():
text = text.replace(value, '[value_%s]'%slot)
for value, slot in self.delex_sg_valdict.items():
tokens = text.split()
for idx, tk in enumerate(tokens):
if tk == value:
tokens[idx] = '[value_%s]'%slot
text = ' '.join(tokens)
for ambg_ent in self.ambiguous_vals:
start_idx = text.find(' '+ambg_ent) # ely is a place, but appears in words like moderately
if start_idx == -1:
continue
front_words = text[:start_idx].split()
ent_type = 'time' if ':' in ambg_ent else 'place'
for fw in front_words[::-1]:
if fw in ['arrive', 'arrives', 'arrived', 'arriving', 'arrival', 'destination', 'there', 'reach', 'to', 'by', 'before']:
slot = '[value_arrive]' if ent_type=='time' else '[value_destination]'
text = re.sub(' '+ambg_ent, ' '+slot, text)
elif fw in ['leave', 'leaves', 'leaving', 'depart', 'departs', 'departing', 'departure',
'from', 'after', 'pulls']:
slot = '[value_leave]' if ent_type=='time' else '[value_departure]'
text = re.sub(' '+ambg_ent, ' '+slot, text)
text = text.replace('[value_car] [value_car]', '[value_car]')
return text
def get_delex_valdict(self, ):
skip_entry_type = {
'taxi': ['taxi_phone'],
'police': ['id'],
'hospital': ['id'],
'hotel': ['id', 'location', 'internet', 'parking', 'takesbookings', 'stars', 'price', 'n', 'postcode', 'phone'],
'attraction': ['id', 'location', 'pricerange', 'price', 'openhours', 'postcode', 'phone'],
'train': ['price', 'id'],
'restaurant': ['id', 'location', 'introduction', 'signature', 'type', 'postcode', 'phone'],
}
entity_value_to_slot= {}
ambiguous_entities = []
for domain, db_data in self.db.dbs.items():
print('Processing entity values in [%s]'%domain)
if domain != 'taxi':
for db_entry in db_data:
for slot, value in db_entry.items():
if slot not in skip_entry_type[domain]:
if type(value) is not str:
raise TypeError("value '%s' in domain '%s' should be rechecked"%(slot, domain))
else:
slot, value = clean_slot_values(domain, slot, value)
value = ' '.join([token.text for token in self.nlp(value)]).strip()
if value in entity_value_to_slot and entity_value_to_slot[value] != slot:
# print(value, ": ",entity_value_to_slot[value], slot)
ambiguous_entities.append(value)
entity_value_to_slot[value] = slot
else: # taxi db specific
db_entry = db_data[0]
for slot, ent_list in db_entry.items():
if slot not in skip_entry_type[domain]:
for ent in ent_list:
entity_value_to_slot[ent] = 'car'
ambiguous_entities = set(ambiguous_entities)
ambiguous_entities.remove('cambridge')
ambiguous_entities = list(ambiguous_entities)
for amb_ent in ambiguous_entities: # departure or destination? arrive time or leave time?
entity_value_to_slot.pop(amb_ent)
entity_value_to_slot['parkside'] = 'address'
entity_value_to_slot['parkside, cambridge'] = 'address'
entity_value_to_slot['cambridge belfry'] = 'name'
entity_value_to_slot['hills road'] = 'address'
entity_value_to_slot['hills rd'] = 'address'
entity_value_to_slot['Parkside Police Station'] = 'name'
single_token_values = {}
multi_token_values = {}
for val, slt in entity_value_to_slot.items():
if val in ['cambridge']:
continue
if len(val.split())>1:
multi_token_values[val] = slt
else:
single_token_values[val] = slt
with open(self.delex_sg_valdict_path, 'w') as f:
single_token_values = OrderedDict(sorted(single_token_values.items(), key=lambda kv:len(kv[0]), reverse=True))
json.dump(single_token_values, f, indent=2)
print('single delex value dict saved!')
with open(self.delex_mt_valdict_path, 'w') as f:
multi_token_values = OrderedDict(sorted(multi_token_values.items(), key=lambda kv:len(kv[0]), reverse=True))
json.dump(multi_token_values, f, indent=2)
print('multi delex value dict saved!')
with open(self.ambiguous_val_path, 'w') as f:
json.dump(ambiguous_entities, f, indent=2)
print('ambiguous value dict saved!')
return single_token_values, multi_token_values, ambiguous_entities
def preprocess_main(self, save_path=None, is_test=False):
"""
"""
data = {}
count=0
self.unique_da = {}
ordered_sysact_dict = {}
for fn, raw_dial in tqdm(list(self.convlab_data.items())):
count +=1
# if count == 100:
# break
compressed_goal = {} # for every dialog, keep track the goal, domains, requests
dial_domains, dial_reqs = [], []
for dom, g in raw_dial['goal'].items():
if dom != 'topic' and dom != 'message' and g:
if g.get('reqt'): # request info. eg. postcode/address/phone
for i, req_slot in enumerate(g['reqt']): # normalize request slots
if ontology.normlize_slot_names.get(req_slot):
g['reqt'][i] = ontology.normlize_slot_names[req_slot]
dial_reqs.append(g['reqt'][i])
compressed_goal[dom] = g
if dom in ontology.all_domains:
dial_domains.append(dom)
dial_reqs = list(set(dial_reqs))
dial = {'goal': compressed_goal, 'log': []}
single_turn = {}
constraint_dict = OrderedDict()
prev_constraint_dict = {}
prev_turn_domain = ['general']
ordered_sysact_dict[fn] = {}
for turn_num, dial_turn in enumerate(raw_dial['log']):
# for user turn, have text
# sys turn: text, belief states(metadata), dialog_act, span_info
dial_state = dial_turn['metadata']
if not dial_state: # user
# delexicalize user utterance, either by annotation or by val_dict
u = ' '.join(clean_text(dial_turn['text']).split())
if dial_turn['span_info']:
u_delex = clean_text(self.delex_by_annotation(dial_turn))
else:
u_delex = self.delex_by_valdict(dial_turn['text'])
single_turn['user'] = u
single_turn['user_delex'] = u_delex
else: # system
# delexicalize system response, either by annotation or by val_dict
if dial_turn['span_info']:
s_delex = clean_text(self.delex_by_annotation(dial_turn))
else:
if not dial_turn['text']:
print(fn)
s_delex = self.delex_by_valdict(dial_turn['text'])
single_turn['resp'] = s_delex
# get belief state, semi=informable/book=requestable, put into constraint_dict
for domain in dial_domains:
if not constraint_dict.get(domain):
constraint_dict[domain] = OrderedDict()
info_sv = dial_state[domain]['semi']
for s,v in info_sv.items():
s,v = clean_slot_values(domain, s,v)
if len(v.split())>1:
v = ' '.join([token.text for token in self.nlp(v)]).strip()
if v != '':
constraint_dict[domain][s] = v
book_sv = dial_state[domain]['book']
for s,v in book_sv.items():
if s == 'booked':
continue
s,v = clean_slot_values(domain, s,v)
if len(v.split())>1:
v = ' '.join([token.text for token in self.nlp(v)]).strip()
if v != '':
constraint_dict[domain][s] = v
constraints = [] # list in format of [domain] slot value
cons_delex = []
turn_dom_bs = []
for domain, info_slots in constraint_dict.items():
if info_slots:
constraints.append('['+domain+']')
cons_delex.append('['+domain+']')
for slot, value in info_slots.items():
constraints.append(slot)
constraints.extend(value.split())
cons_delex.append(slot)
if domain not in prev_constraint_dict:
turn_dom_bs.append(domain)
elif prev_constraint_dict[domain] != constraint_dict[domain]:
turn_dom_bs.append(domain)
sys_act_dict = {}
turn_dom_da = set()
for act in dial_turn['dialog_act']:
d, a = act.split('-') # split domain-act
turn_dom_da.add(d)
turn_dom_da = list(turn_dom_da)
if len(turn_dom_da) != 1 and 'general' in turn_dom_da:
turn_dom_da.remove('general')
if len(turn_dom_da) != 1 and 'booking' in turn_dom_da:
turn_dom_da.remove('booking')
# get turn domain
turn_domain = turn_dom_bs
for dom in turn_dom_da:
if dom != 'booking' and dom not in turn_domain:
turn_domain.append(dom)
if not turn_domain:
turn_domain = prev_turn_domain
if len(turn_domain) == 2 and 'general' in turn_domain:
turn_domain.remove('general')
if len(turn_domain) == 2:
if len(prev_turn_domain) == 1 and prev_turn_domain[0] == turn_domain[1]:
turn_domain = turn_domain[::-1]
# get system action
for dom in turn_domain:
sys_act_dict[dom] = {}
add_to_last_collect = []
booking_act_map = {'inform': 'offerbook', 'book': 'offerbooked'}
for act, params in dial_turn['dialog_act'].items():
if act == 'general-greet':
continue
d, a = act.split('-')
if d == 'general' and d not in sys_act_dict:
sys_act_dict[d] = {}
if d == 'booking':
d = turn_domain[0]
a = booking_act_map.get(a, a)
add_p = []
for param in params:
p = param[0]
if p == 'none':
continue
elif ontology.da_abbr_to_slot_name.get(p):
p = ontology.da_abbr_to_slot_name[p]
if p not in add_p:
add_p.append(p)
add_to_last = True if a in ['request', 'reqmore', 'bye', 'offerbook'] else False
if add_to_last:
add_to_last_collect.append((d,a,add_p))
else:
sys_act_dict[d][a] = add_p
for d, a, add_p in add_to_last_collect:
sys_act_dict[d][a] = add_p
for d in copy.copy(sys_act_dict):
acts = sys_act_dict[d]
if not acts:
del sys_act_dict[d]
if 'inform' in acts and 'offerbooked' in acts:
for s in sys_act_dict[d]['inform']:
sys_act_dict[d]['offerbooked'].append(s)
del sys_act_dict[d]['inform']
ordered_sysact_dict[fn][len(dial['log'])] = sys_act_dict
sys_act = []
if 'general-greet' in dial_turn['dialog_act']:
sys_act.extend(['[general]', '[greet]'])
for d, acts in sys_act_dict.items():
sys_act += ['[' + d + ']']
for a, slots in acts.items():
self.unique_da[d+'-'+a] = 1
sys_act += ['[' + a + ']']
sys_act += slots
# get db pointers
matnums = self.db.get_match_num(constraint_dict)
match_dom = turn_domain[0] if len(turn_domain) == 1 else turn_domain[1]
match = matnums[match_dom]
dbvec = self.db.addDBPointer(match_dom, match)
bkvec = self.db.addBookingPointer(dial_turn['dialog_act'])
single_turn['pointer'] = ','.join([str(d) for d in dbvec + bkvec]) # 4 database pointer for domains, 2 for booking
single_turn['match'] = str(match)
single_turn['constraint'] = ' '.join(constraints)
single_turn['cons_delex'] = ' '.join(cons_delex)
single_turn['sys_act'] = ' '.join(sys_act)
single_turn['turn_num'] = len(dial['log'])
single_turn['turn_domain'] = ' '.join(['['+d+']' for d in turn_domain])
prev_turn_domain = copy.deepcopy(turn_domain)
prev_constraint_dict = copy.deepcopy(constraint_dict)
if 'user' in single_turn:
dial['log'].append(single_turn)
for t in single_turn['user'].split() + single_turn['resp'].split() + constraints + sys_act:
self.vocab.add_word(t)
for t in single_turn['user_delex'].split():
if '[' in t and ']' in t and not t.startswith('[') and not t.endswith(']'):
single_turn['user_delex'].replace(t, t[t.index('['): t.index(']')+1])
elif not self.vocab.has_word(t):
self.vocab.add_word(t)
single_turn = {}
data[fn] = dial
# pprint(dial)
# if count == 20:
# break
self.vocab.construct()
self.vocab.save_vocab('data/multi-woz-processed/vocab')
with open('data/multi-woz-analysis/dialog_acts.json', 'w') as f:
json.dump(ordered_sysact_dict, f, indent=2)
with open('data/multi-woz-analysis/dialog_act_type.json', 'w') as f:
json.dump(self.unique_da, f, indent=2)
return data
if __name__=='__main__':
db_paths = {
'attraction': 'db/attraction_db.json',
'hospital': 'db/hospital_db.json',
'hotel': 'db/hotel_db.json',
'police': 'db/police_db.json',
'restaurant': 'db/restaurant_db.json',
'taxi': 'db/taxi_db.json',
'train': 'db/train_db.json',
}
get_db_values('db/value_set.json') #
preprocess_db(db_paths)
dh = DataPreprocessor()
data = dh.preprocess_main()
if not os.path.exists('data/multi-woz-processed'):
os.mkdir('data/multi-woz-processed')
with open('data/multi-woz-processed/data_for_damd.json', 'w') as f:
json.dump(data, f, indent=2)