-
Notifications
You must be signed in to change notification settings - Fork 9
/
DiscreteDifferentialEvolution.cs
292 lines (245 loc) · 7.12 KB
/
DiscreteDifferentialEvolution.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
using System;
using System.Diagnostics;
using System.Globalization;
namespace BingoSlotDifferentialEvolutionOptimization {
class DiscreteDifferentialEvolution {
public const long NUMBER_OF_RECOMBINATIONS = 1000;
public const int POPULATION_SIZE = 17;
public const int NUMBER_OF_REELS = 5;
public const int REEL_LENGTH = 63;
private double targetRtp;
private int symbolsDiversity;
private double[] fitness = new double[ POPULATION_SIZE ];
private int[][][] population = new int[POPULATION_SIZE][][];
private int[][] offspring = null;
private int targetIndex = -1;
private int baseIndex = -1;
private int aIndex = -1;
private int bIndex = -1;
private int bestIndex = -1;
public int[][] best() {
return population[bestIndex];
}
public void select () {
do {
targetIndex = Util.prng.Next (population.Length);
baseIndex = Util.prng.Next (population.Length);
aIndex = Util.prng.Next (population.Length);
bIndex = Util.prng.Next (population.Length);
} while(targetIndex == baseIndex || targetIndex == aIndex || targetIndex == bIndex || baseIndex == aIndex || baseIndex == bIndex || aIndex == bIndex);
}
public void differs () {
int min = int.MaxValue;
int max = int.MinValue;
for (int i = 0; i < offspring.Length; i++) {
for (int j = 0; j < offspring [i].Length; j++) {
offspring [i] [j] = population [aIndex] [i] [j] - population [bIndex] [i] [j];
if (min > offspring [i] [j]) {
min = offspring [i] [j];
}
if (max < offspring [i] [j]) {
max = offspring [i] [j];
}
}
}
/*
* Normalize.
*/
for (int i = 0; i < offspring.Length; i++) {
for (int j = 0; j < offspring [i].Length; j++) {
offspring [i] [j] -= min;
if (min < max) {
offspring [i] [j] = 3 * offspring [i] [j] / (max - min + 1) - 1;
}
}
}
}
public void mutate () {
for (int i = 0; i < offspring.Length; i++) {
for (int j = 0; j < offspring [i].Length; j++) {
offspring [i] [j] += population [baseIndex] [i] [j];
}
}
/*
* Validate reels.
*/
for (int i = 0; i < offspring.Length; i++) {
for (int j = 0; j < offspring [i].Length; j++) {
if (Symbols.isValid (offspring [i] [j]) == false) {
offspring [i] [j] = Symbols.randomValid ();
}
}
}
}
public void crossover () {
for (int i = 0; i < offspring.Length; i++) {
for (int j = 0; j < offspring [i].Length; j++) {
if (Util.prng.NextDouble () < 0.5) {
offspring [i] [j] = population [targetIndex] [i] [j];
}
}
}
}
public void survive () {
SlotMachineSimulation simulation = null;
/*
* Re-evaluate target.
*/
if(Util.REEVALUATE_TARGET_VECTOR == true) {
simulation = new SlotMachineSimulation ();
simulation.load (population [targetIndex]);
simulation.simulate (symbolsDiversity);
fitness [targetIndex] = simulation.costFunction (targetRtp, symbolsDiversity);
if (fitness [bestIndex] > fitness [targetIndex]) {
bestIndex = targetIndex;
}
}
/*
* Evaluate new solution.
*/
simulation = new SlotMachineSimulation ();
simulation.load (offspring);
simulation.simulate (symbolsDiversity);
double cost = simulation.costFunction (targetRtp, symbolsDiversity);
/*
* If better solution is not found - exit.
*/
if (cost >= fitness [targetIndex]) {
return;
}
fitness [targetIndex] = cost;
for (int i = 0; i < offspring.Length; i++) {
for (int j = 0; j < offspring [i].Length; j++) {
population [targetIndex] [i] [j] = offspring [i] [j];
}
}
if (fitness [bestIndex] > fitness [targetIndex]) {
bestIndex = targetIndex;
}
}
public void optimize () {
for (int r = 0; r < NUMBER_OF_RECOMBINATIONS; r++) {
Stopwatch watch = Stopwatch.StartNew ();
select ();
differs ();
mutate ();
crossover ();
survive ();
//TODO Remove absolutely identical individuals from the population.
watch.Stop ();
if (Util.VERBOSE == true) {
Console.WriteLine (targetRtp);
CultureInfo ci = new CultureInfo ("en-us");
Console.WriteLine ("{0}:{1}:{2}", ((int)watch.Elapsed.TotalHours).ToString ("D2", ci), ((int)watch.Elapsed.TotalMinutes % 60).ToString ("D2", ci), ((int)watch.Elapsed.TotalSeconds % 60).ToString ("D2", ci));
Console.WriteLine (this);
}
}
}
public void initialSinglePoint(int[][] reels) {
for (int p = 0; p < population.Length; p++) {
for (int i = 0; i < reels.Length; i++) {
for (int j = 0; j < reels [i].Length; j++) {
population [p] [i] [j] = reels [i] [j];
}
}
}
/*
* Move around, but keep the first unchanged.
*/
for (int p = 1; p < population.Length; p++) {
for (int i = 0; i < reels.Length; i++) {
for (int j = 0; j < reels [i].Length; j++) {
int q = Util.prng.Next (reels [i].Length);
int swap = population [p] [i] [q];
population [p] [i] [q] = population [p] [i] [j];
population [p] [i] [j] = swap;
}
}
}
}
public void initialRandomPoints() {
for (int p = 0; p < population.Length; p++) {
for (int i = 0; i < population [p].Length; i++) {
for (int j = 0; j < population [p] [i].Length; j++) {
population [p] [i] [j] = Symbols.randomValid();
}
}
}
}
public DiscreteDifferentialEvolution (int[][] reels, double targetRtp, int symbolsDiversity) {
if (reels.Length != NUMBER_OF_REELS) {
Console.WriteLine ("Number of reals is incorrect!");
return;
}
for (int i = 0; i < reels.Length; i++) {
if (reels [i].Length != REEL_LENGTH) {
Console.WriteLine ("Reel length is incorrect!");
return;
}
}
for (int p = 0; p < POPULATION_SIZE; p++) {
population [p] = new int[NUMBER_OF_REELS] [];
for (int i = 0; i < NUMBER_OF_REELS; i++) {
population [p] [i] = new int[REEL_LENGTH];
}
}
offspring = new int[NUMBER_OF_REELS] [];
for (int i = 0; i < NUMBER_OF_REELS; i++) {
offspring [i] = new int[REEL_LENGTH];
}
this.targetRtp = targetRtp;
this.symbolsDiversity = symbolsDiversity;
if(Util.RANDOM_INITIAL_REELS == true){
initialRandomPoints();
} else {
initialSinglePoint(reels);
}
/*
* Just put a big number (bad fitness), when there is no evaluation.
*/
for (int p = 0; p < population.Length; p++) {
fitness [p] = int.MaxValue;
}
/*
* Evaluate population fintess.
*/
bestIndex = 0;
for (int p = 0; p < population.Length; p++) {
/*
* It will be evaluated in the first surviver.
*/
if(Util.REEVALUATE_TARGET_VECTOR == true) {
break;
}
SlotMachineSimulation simulation = new SlotMachineSimulation ();
simulation.load (population [p]);
simulation.simulate (symbolsDiversity);
fitness [p] = simulation.costFunction (targetRtp, symbolsDiversity);
if (fitness [bestIndex] > fitness [p]) {
bestIndex = p;
}
}
}
public override string ToString () {
string result = "";
for (int p = 0; p < population.Length; p++) {
if (p != bestIndex) {
continue;
}
result += fitness [p];
result += "\r\n";
for (int i = 0; i < population [p].Length; i++) {
result += "new int[] {";
for (int j = 0; j < population [p] [i].Length; j++) {
result += population [p] [i] [j];
result += ",";
//result += "\t";
}
result += "},";
result += "\r\n";
}
}
return result;
}
}
}