Skip to content

Latest commit

 

History

History

left_stampi

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 
 
 

Left STAMPi

Citekey YehEtAl2016Matrix
Source Code stumpy
Learning type unsupervised
Input dimensionality univariate

This approach uses the left matrix profile (LMP). That is extended with every new point in the stream. The already existing LMP entries are not updated.

Output Format

The output will be an anomaly score for every input data point

Dependencies

  • python 3
  • numpy
  • pandas
  • stumpy

Notes

from timeeval.utils.window import ReverseWindowing
# post-processing for left_stampi
def post_left_stampi(scores: np.ndarray, args: dict) -> np.ndarray:
    window_size = args.get("hyper_params", {}).get("anomaly_window_size", 50)
    n_init_train = args.get("hyper_params", {}).get("n_init_train", 50)
    if window_size > n_init_train:
        print(f"WARN: anomaly_window_size is larger than n_init_train. Dynamically fixing it by setting anomaly_window_size to n_init_train={n_init_train}")
        window_size = n_init_train
    if window_size < 3:
        print("WARN: anomaly_window_size must be at least 3. Dynamically fixing it by setting anomaly_window_size to 3")
        window_size = 3
    return ReverseWindowing(window_size=window_size).fit_transform(scores)