-
Notifications
You must be signed in to change notification settings - Fork 30
/
algorithm.py
68 lines (54 loc) · 1.9 KB
/
algorithm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import numpy as np
import pandas as pd
import json
import sys
from dataclasses import dataclass, asdict
import argparse
from kmeans.model import KMeansAD
@dataclass
class CustomParameters:
n_clusters: int = 20
anomaly_window_size: int = 20
stride: int = 1
n_jobs: int = 1
random_state: int = 42
class AlgorithmArgs(argparse.Namespace):
@property
def ts(self) -> np.ndarray:
return self.df.iloc[:, 1:-1].values
@property
def df(self) -> pd.DataFrame:
return pd.read_csv(self.dataInput)
@staticmethod
def from_sys_args() -> 'AlgorithmArgs':
args: dict = json.loads(sys.argv[1])
custom_parameter_keys = dir(CustomParameters())
filtered_parameters = dict(
filter(lambda x: x[0] in custom_parameter_keys, args.get("customParameters", {}).items()))
args["customParameters"] = CustomParameters(**filtered_parameters)
return AlgorithmArgs(**args)
def set_random_state(config: AlgorithmArgs) -> None:
seed = config.customParameters.random_state
import random
random.seed(seed)
np.random.seed(seed)
def execute(args: AlgorithmArgs):
set_random_state(args)
data = args.ts
params = asdict(args.customParameters)
params["k"] = params["n_clusters"]
params["window_size"] = params["anomaly_window_size"]
del params["n_clusters"]
del params["random_state"]
del params["anomaly_window_size"]
detector = KMeansAD(**params)
anomaly_scores = detector.fit_predict(data)
anomaly_scores.tofile(args.dataOutput, sep="\n")
if __name__ == "__main__":
args = AlgorithmArgs.from_sys_args()
if args.executionType == "train":
print("This algorithm does not need to be trained!")
elif args.executionType == "execute":
execute(args)
else:
raise ValueError(f"No executionType '{args.executionType}' available! Choose either 'train' or 'execute'.")