-
Notifications
You must be signed in to change notification settings - Fork 30
/
simple_nlp.py
53 lines (36 loc) · 1.13 KB
/
simple_nlp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import casadi as cs
import torch.nn
import l4casadi as l4c
# Declare variables
x = cs.MX.sym("x", 2)
# Form the NLP
class PyTorchObjectiveModel(torch.nn.Module):
def forward(self, input):
return torch.square(input[0]) + torch.square(input[1])[..., None]
f = PyTorchObjectiveModel() # objective
f = l4c.L4CasADi(f, name='f')(x)
class PyTorchConstraintModel(torch.nn.Module):
def forward(self, input):
return (input[0] + input[1] - 10)[..., None]
g = PyTorchConstraintModel() # constraint
g = l4c.L4CasADi(g, name='g')(x)
nlp = {'x': x, 'f': f, 'g': g}
# Pick an NLP solver
MySolver = "ipopt"
# MySolver = "worhp"
# MySolver = "sqpmethod"
# Solver options
opts = {}
if MySolver == "sqpmethod":
opts["qpsol"] = "qpoases"
opts["qpsol_options"] = {"printLevel": "none"} # type: ignore[assignment]
# Allocate a solver
solver = cs.nlpsol("solver", MySolver, nlp, opts)
# Solve the NLP
sol = solver(lbg=0)
# Print solution
print("-----")
print("objective at solution = ", sol["f"])
print("primal solution = ", sol["x"])
print("dual solution (x) = ", sol["lam_x"])
print("dual solution (g) = ", sol["lam_g"])