-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy pathacados.py
214 lines (165 loc) · 5.94 KB
/
acados.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import casadi as cs
import numpy as np
import torch
import l4casadi as l4c
from acados_template import AcadosOcpSolver, AcadosOcp, AcadosModel
import time
COST = 'LINEAR_LS' # NONLINEAR_LS
class MultiLayerPerceptron(torch.nn.Module):
def __init__(self):
super().__init__()
self.input_layer = torch.nn.Linear(2, 512)
hidden_layers = []
for i in range(2):
hidden_layers.append(torch.nn.Linear(512, 512))
self.hidden_layer = torch.nn.ModuleList(hidden_layers)
self.out_layer = torch.nn.Linear(512, 1)
# Model is not trained -- setting output to zero
with torch.no_grad():
self.out_layer.bias.fill_(0.)
self.out_layer.weight.fill_(0.)
def forward(self, x):
x = self.input_layer(x)
for layer in self.hidden_layer:
x = torch.tanh(layer(x))
x = self.out_layer(x)
return x
class DoubleIntegratorWithLearnedDynamics:
def __init__(self, learned_dyn):
self.learned_dyn = learned_dyn
def model(self):
s = cs.MX.sym('s', 1)
s_dot = cs.MX.sym('s_dot', 1)
s_dot_dot = cs.MX.sym('s_dot_dot', 1)
u = cs.MX.sym('u', 1)
x = cs.vertcat(s, s_dot)
x_dot = cs.vertcat(s_dot, s_dot_dot)
res_model = self.learned_dyn(x)
f_expl = cs.vertcat(
s_dot,
u
) + res_model
x_start = np.zeros((2, ))
# store to struct
model = cs.types.SimpleNamespace()
model.x = x
model.xdot = x_dot
model.u = u
model.z = cs.vertcat([])
model.p = cs.vertcat([])
model.f_expl = f_expl
model.x_start = x_start
model.constraints = cs.vertcat([])
model.name = "wr"
return model
class MPC:
def __init__(self, model, N, external_shared_lib_dir, external_shared_lib_name):
self.N = N
self.model = model
self.external_shared_lib_dir = external_shared_lib_dir
self.external_shared_lib_name = external_shared_lib_name
@property
def solver(self):
return AcadosOcpSolver(self.ocp())
def ocp(self):
model = self.model
t_horizon = 1.
N = self.N
# Get model
model_ac = self.acados_model(model=model)
model_ac.p = model.p
# Dimensions
nx = 2
nu = 1
ny = 1
# Create OCP object to formulate the optimization
ocp = AcadosOcp()
ocp.model = model_ac
ocp.dims.N = N
ocp.dims.nx = nx
ocp.dims.nu = nu
ocp.dims.ny = ny
ocp.solver_options.tf = t_horizon
if COST == 'LINEAR_LS':
# Initialize cost function
ocp.cost.cost_type = 'LINEAR_LS'
ocp.cost.cost_type_e = 'LINEAR_LS'
ocp.cost.W = np.array([[1.]])
ocp.cost.Vx = np.zeros((ny, nx))
ocp.cost.Vx[0, 0] = 1.
ocp.cost.Vu = np.zeros((ny, nu))
ocp.cost.Vz = np.array([[]])
ocp.cost.Vx_e = np.zeros((ny, nx))
l4c_y_expr = None
else:
ocp.cost.cost_type = 'NONLINEAR_LS'
ocp.cost.cost_type_e = 'NONLINEAR_LS'
x = ocp.model.x
ocp.cost.W = np.array([[1.]])
# Trivial PyTorch index 0
l4c_y_expr = l4c.L4CasADi(lambda x: x[0], name='y_expr')
ocp.model.cost_y_expr = l4c_y_expr(x)
ocp.model.cost_y_expr_e = x[0]
ocp.cost.W_e = np.array([[0.]])
ocp.cost.yref_e = np.array([0.])
# Initial reference trajectory (will be overwritten)
ocp.cost.yref = np.zeros(1)
# Initial state (will be overwritten)
ocp.constraints.x0 = model.x_start
# Set constraints
a_max = 10
ocp.constraints.lbu = np.array([-a_max])
ocp.constraints.ubu = np.array([a_max])
ocp.constraints.idxbu = np.array([0])
# Solver options
ocp.solver_options.qp_solver = 'FULL_CONDENSING_HPIPM'
ocp.solver_options.hessian_approx = 'GAUSS_NEWTON'
ocp.solver_options.integrator_type = 'ERK'
ocp.solver_options.nlp_solver_type = 'SQP_RTI'
ocp.solver_options.model_external_shared_lib_dir = self.external_shared_lib_dir
if COST == 'LINEAR_LS':
ocp.solver_options.model_external_shared_lib_name = self.external_shared_lib_name
else:
ocp.solver_options.model_external_shared_lib_name = self.external_shared_lib_name + ' -l' + l4c_y_expr.name
return ocp
def acados_model(self, model):
model_ac = AcadosModel()
model_ac.f_impl_expr = model.xdot - model.f_expl
model_ac.f_expl_expr = model.f_expl
model_ac.x = model.x
model_ac.xdot = model.xdot
model_ac.u = model.u
model_ac.name = model.name
return model_ac
def run():
N = 10
learned_dyn_model = l4c.L4CasADi(MultiLayerPerceptron(), model_expects_batch_dim=True, name='learned_dyn')
model = DoubleIntegratorWithLearnedDynamics(learned_dyn_model)
solver = MPC(model=model.model(), N=N,
external_shared_lib_dir=learned_dyn_model.shared_lib_dir,
external_shared_lib_name=learned_dyn_model.name).solver
x = []
x_ref = []
ts = 1. / N
xt = np.array([1., 0.])
opt_times = []
for i in range(50):
now = time.time()
t = np.linspace(i * ts, i * ts + 1., 10)
yref = np.sin(0.5 * t + np.pi / 2)
x_ref.append(yref[0])
for t, ref in enumerate(yref):
solver.set(t, "yref", ref)
solver.set(0, "lbx", xt)
solver.set(0, "ubx", xt)
solver.solve()
xt = solver.get(1, "x")
x.append(xt)
x_l = []
for i in range(N):
x_l.append(solver.get(i, "x"))
elapsed = time.time() - now
opt_times.append(elapsed)
print(f'Mean iteration time: {1000*np.mean(opt_times):.1f}ms -- {1/np.mean(opt_times):.0f}Hz)')
if __name__ == '__main__':
run()