-
Notifications
You must be signed in to change notification settings - Fork 74
/
data.py
88 lines (86 loc) · 2.92 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import torch
import torchvision
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import os
def get_data(dataset, data_path, batch_size, val_ratio, num_workers):
assert dataset in ["CIFAR10", "IMAGENET12"], "dataset not supported {}".format(
dataset
)
assert val_ratio >= 0, "invalid validation ratio: {}".format(val_ratio)
print("Loading dataset {} from {}".format(dataset, data_path))
if dataset == "CIFAR10":
ds = getattr(datasets, dataset)
path = os.path.join(data_path, dataset.lower())
transform_train = transforms.Compose(
[
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(
(0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)
),
]
)
transform_test = transforms.Compose(
[
transforms.ToTensor(),
transforms.Normalize(
(0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)
),
]
)
train_set = ds(path, train=True, download=True, transform=transform_train)
val_set = ds(path, train=True, download=True, transform=transform_test)
test_set = ds(path, train=False, download=True, transform=transform_test)
train_sampler = None
val_sampler = None
num_classes = 10
elif dataset == "IMAGENET12":
traindir = os.path.join(data_path, dataset.lower(), "train")
valdir = os.path.join(data_path, dataset.lower(), "val")
normalize = transforms.Normalize(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
)
train_set = datasets.ImageFolder(
traindir,
transforms.Compose(
[
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
]
),
)
test_set = datasets.ImageFolder(
valdir,
transforms.Compose(
[
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
normalize,
]
),
)
train_sampler = None
val_sampler = None
num_classes = 1000
loaders = {
"train": torch.utils.data.DataLoader(
train_set,
batch_size=batch_size,
shuffle=True,
num_workers=num_workers,
pin_memory=True,
),
"test": torch.utils.data.DataLoader(
test_set,
batch_size=batch_size,
shuffle=False,
num_workers=num_workers,
pin_memory=True,
),
}
return loaders