-
Notifications
You must be signed in to change notification settings - Fork 75
/
train.py
48 lines (44 loc) · 1.52 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import numpy as np
import gym
import os, sys
from arguments import get_args
from mpi4py import MPI
from rl_modules.ddpg_agent import ddpg_agent
import random
import torch
"""
train the agent, the MPI part code is copy from openai baselines(https://github.com/openai/baselines/blob/master/baselines/her)
"""
def get_env_params(env):
obs = env.reset()
# close the environment
params = {'obs': obs['observation'].shape[0],
'goal': obs['desired_goal'].shape[0],
'action': env.action_space.shape[0],
'action_max': env.action_space.high[0],
}
params['max_timesteps'] = env._max_episode_steps
return params
def launch(args):
# create the ddpg_agent
env = gym.make(args.env_name)
# set random seeds for reproduce
env.seed(args.seed + MPI.COMM_WORLD.Get_rank())
random.seed(args.seed + MPI.COMM_WORLD.Get_rank())
np.random.seed(args.seed + MPI.COMM_WORLD.Get_rank())
torch.manual_seed(args.seed + MPI.COMM_WORLD.Get_rank())
if args.cuda:
torch.cuda.manual_seed(args.seed + MPI.COMM_WORLD.Get_rank())
# get the environment parameters
env_params = get_env_params(env)
# create the ddpg agent to interact with the environment
ddpg_trainer = ddpg_agent(args, env, env_params)
ddpg_trainer.learn()
if __name__ == '__main__':
# take the configuration for the HER
os.environ['OMP_NUM_THREADS'] = '1'
os.environ['MKL_NUM_THREADS'] = '1'
os.environ['IN_MPI'] = '1'
# get the params
args = get_args()
launch(args)