-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathmain.py
39 lines (34 loc) · 1.81 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import torch
import torch.nn as nn
import torch.optim as optim
from dataset import Data
from dataset import DataLoaderX
from config import DefaultConfig
from student_model import student_model
from run import run_epoch
opt = DefaultConfig()
if __name__ == '__main__':
train_dataset = Data(train=True)
test_dataset = Data(train=False)
train_loader = DataLoaderX(train_dataset, batch_size=opt.batch_size, num_workers=4, pin_memory=True, shuffle=True)
test_loader = DataLoaderX(test_dataset, batch_size=opt.batch_size, num_workers=4, pin_memory=True)
num_skills = train_dataset.max_skill_num + 1
m = student_model(num_skills=num_skills, state_size=opt.state_size,
num_heads=opt.num_heads, dropout=opt.dropout, infer=False)
torch.backends.cudnn.benchmark = True
best_auc = 0
optimizer = optim.Adam(m.parameters(), lr=opt.lr, weight_decay=opt.weight_decay)
scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=1000, gamma=opt.lr_decay)
criterion = nn.BCELoss()
for epoch in range(opt.max_epoch):
rmse, auc, r2, acc = run_epoch(m, train_loader, optimizer, scheduler, criterion,
num_skills=num_skills, epoch_id=epoch, is_training=True)
print('Epoch %d:\nTrain metrics: auc: %.3f, acc: %.3f, rmse: %.3f, r2: %.3f' \
% (epoch + 1, auc, acc, rmse, r2))
rmse, auc, r2, acc = run_epoch(m, test_loader, optimizer, scheduler, criterion,
num_skills=num_skills, epoch_id=epoch, is_training=False)
print('\nTest metrics: auc: %.3f, acc: %.3f, rmse: %.3f, r2: %.3f' \
% (auc, acc, rmse ,r2))
if auc > best_auc:
best_auc = auc
torch.save(m.state_dict(), 'models/sakt_model_auc_{}.pkl'.format(int(best_auc * 1000)))