-
Notifications
You must be signed in to change notification settings - Fork 119
/
train_eval_qap.py
248 lines (197 loc) · 9.74 KB
/
train_eval_qap.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import torch.optim as optim
import time
from datetime import datetime
from pathlib import Path
from tensorboardX import SummaryWriter
from src.dataset.data_loader import QAPDataset, get_dataloader
from src.loss_func import *
from src.evaluation_metric import objective_score
from src.parallel import DataParallel
from src.utils.model_sl import load_model, save_model
from eval_qap import eval_model
from src.utils.data_to_cuda import data_to_cuda
from src.utils.config import cfg
def train_eval_model(model,
criterion,
optimizer,
dataloader,
tfboard_writer,
num_epochs=25,
start_epoch=0):
print('Start training...')
since = time.time()
dataset_size = len(dataloader['train'].dataset)
device = next(model.parameters()).device
print('model on device: {}'.format(device))
checkpoint_path = Path(cfg.OUTPUT_PATH) / 'params'
if not checkpoint_path.exists():
checkpoint_path.mkdir(parents=True)
model_path, optim_path = '',''
if start_epoch > 0:
model_path = str(checkpoint_path / 'params_{:04}.pt'.format(start_epoch))
optim_path = str(checkpoint_path / 'optim_{:04}.pt'.format(start_epoch))
if len(cfg.PRETRAINED_PATH) > 0:
model_path = cfg.PRETRAINED_PATH
if len(model_path) > 0:
print('Loading model parameters from {}'.format(model_path))
load_model(model, model_path, strict=False)
if len(optim_path) > 0:
print('Loading optimizer state from {}'.format(optim_path))
optimizer.load_state_dict(torch.load(optim_path))
scheduler = optim.lr_scheduler.MultiStepLR(optimizer,
milestones=cfg.TRAIN.LR_STEP,
gamma=cfg.TRAIN.LR_DECAY,
last_epoch=cfg.TRAIN.START_EPOCH - 1)
for epoch in range(start_epoch, num_epochs):
print('Epoch {}/{}'.format(epoch, num_epochs - 1))
print('-' * 10)
model.train() # Set model to training mode
print('lr = ' + ', '.join(['{:.2e}'.format(x['lr']) for x in optimizer.param_groups]))
epoch_loss = 0.0
running_loss = 0.0
running_since = time.time()
iter_num = 0
det_anomaly = False
# Iterate over data.
for inputs in dataloader['train']:
if model.module.device != torch.device('cpu'):
inputs = data_to_cuda(inputs)
n1_gt, n2_gt = inputs['ns']
perm_mat = inputs['gt_perm_mat'].cuda()
iter_num = iter_num + 1
# zero the parameter gradients
optimizer.zero_grad()
with torch.set_grad_enabled(True):
with torch.autograd.set_detect_anomaly(det_anomaly):
# forward
pred = model(inputs)
s_pred, affmtx = pred['ds_mat'], pred['aff_mat']
if type(s_pred) is list:
s_pred = s_pred[-1]
multi_loss = []
if cfg.TRAIN.LOSS_FUNC == 'perm' or cfg.TRAIN.LOSS_FUNC == 'hung':
loss = criterion(s_pred, perm_mat, n1_gt, n2_gt)
elif cfg.TRAIN.LOSS_FUNC == 'obj':
loss = criterion(s_pred, affmtx)
elif cfg.TRAIN.LOSS_FUNC == 'custom':
loss = torch.sum(pred['loss'])
else:
raise ValueError('Unknown loss function {}'.format(cfg.TRAIN.LOSS_FUNC))
if cfg.FP16:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
else:
loss.backward()
det_anomaly = False
for param in model.parameters():
if param.grad is not None and torch.any(torch.isnan(param.grad)):
det_anomaly = True
break
if not det_anomaly:
optimizer.step()
# training accuracy statistic
#acc, _, __ = matching_accuracy(lap_solver(s_pred, n1_gt, n2_gt), perm_mat, n1_gt)
acc = 0
# tfboard writer
loss_dict = {'loss_{}'.format(i): l.item() for i, l in enumerate(multi_loss)}
loss_dict['loss'] = loss.item()
tfboard_writer.add_scalars('loss', loss_dict, epoch * cfg.TRAIN.EPOCH_ITERS + iter_num)
accdict = dict()
accdict['matching accuracy'] = acc
tfboard_writer.add_scalars(
'training accuracy',
accdict,
epoch * cfg.TRAIN.EPOCH_ITERS + iter_num
)
# statistics
running_loss += loss.item() * perm_mat.size(0)
epoch_loss += loss.item() * perm_mat.size(0)
if iter_num % cfg.STATISTIC_STEP == 0:
running_speed = cfg.STATISTIC_STEP * perm_mat.size(0) / (time.time() - running_since)
print('Epoch {:<4} Iteration {:<4} {:>4.2f}sample/s Loss={:<8.4f}'
.format(epoch, iter_num, running_speed, running_loss / cfg.STATISTIC_STEP / perm_mat.size(0)))
tfboard_writer.add_scalars(
'speed',
{'speed': running_speed},
epoch * cfg.TRAIN.EPOCH_ITERS + iter_num
)
running_loss = 0.0
running_since = time.time()
epoch_loss = epoch_loss / dataset_size
#loss_dict = dict()
#loss_dict['loss'] = loss.item()
#tfboard_writer.add_scalars('loss', loss_dict, epoch * dataset_size + iter_num)
save_model(model, str(checkpoint_path / 'params_{:04}.pt'.format(epoch + 1)))
torch.save(optimizer.state_dict(), str(checkpoint_path / 'optim_{:04}.pt'.format(epoch + 1)))
print('Epoch {:<4} Loss: {:.4f}'.format(epoch, epoch_loss))
print()
# Eval in each epoch
accs = eval_model(model, dataloader['test'])
acc_dict = {"{}".format(cls): single_acc for cls, single_acc in zip(dataloader['train'].dataset.classes, accs)}
acc_dict['average'] = torch.mean(accs)
tfboard_writer.add_scalars(
'Eval acc',
acc_dict,
(epoch + 1) * cfg.TRAIN.EPOCH_ITERS
)
scheduler.step()
time_elapsed = time.time() - since
print('Training complete in {:.0f}h {:.0f}m {:.0f}s'
.format(time_elapsed // 3600, (time_elapsed // 60) % 60, time_elapsed % 60))
return model
if __name__ == '__main__':
from src.utils.dup_stdout_manager import DupStdoutFileManager
from src.utils.parse_args import parse_args
from src.utils.print_easydict import print_easydict
args = parse_args('Deep learning of graph matching training & evaluation code.')
import importlib
mod = importlib.import_module(cfg.MODULE)
Net = mod.Net
torch.manual_seed(cfg.RANDOM_SEED)
dataset_len = {'train': cfg.TRAIN.EPOCH_ITERS * cfg.BATCH_SIZE, 'test': cfg.EVAL.SAMPLES}
qap_dataset = {
x: QAPDataset(cfg.DATASET_FULL_NAME,
dataset_len[x],
cfg.TRAIN.CLASS if x == 'train' else None,
sets=x,
fetch_online=False)
for x in ('train', 'test')}
dataloader = {x: get_dataloader(qap_dataset[x], fix_seed=(x == 'test'), shuffle=(x == 'train'))
for x in ('train', 'test')}
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model = Net()
model = model.to(device)
if cfg.TRAIN.LOSS_FUNC.lower() == 'perm':
criterion = CrossEntropyLoss()
elif cfg.TRAIN.LOSS_FUNC.lower() == 'obj':
criterion = lambda *x: torch.mean(objective_score(*x))
elif cfg.TRAIN.LOSS_FUNC.lower() == 'hung':
criterion = PermutationLossHung()
else:
raise ValueError('Unknown loss function {}'.format(cfg.TRAIN.LOSS_FUNC))
if cfg.TRAIN.OPTIMIZER.lower() == 'sgd':
optimizer = optim.SGD(model.parameters(), lr=cfg.TRAIN.LR, momentum=cfg.TRAIN.MOMENTUM, nesterov=True)
elif cfg.TRAIN.OPTIMIZER.lower() == 'adam':
optimizer = optim.Adam(model.parameters(), lr=cfg.TRAIN.LR)
elif cfg.TRAIN.LOSS_FUNC.lower() == 'custom':
criterion = None
print('NOTE: You are setting the loss function as \'custom\', please ensure that there is a tensor with key '
'\'loss\' in your model\'s returned dictionary.')
else:
raise ValueError('Unknown optimizer {}'.format(cfg.TRAIN.OPTIMIZER))
if cfg.FP16:
try:
from apex import amp
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to enable FP16.")
model, optimizer = amp.initialize(model, optimizer)
model = DataParallel(model, device_ids=cfg.GPUS)
if not Path(cfg.OUTPUT_PATH).exists():
Path(cfg.OUTPUT_PATH).mkdir(parents=True)
now_time = datetime.now().strftime('%Y-%m-%d-%H-%M-%S')
tfboardwriter = SummaryWriter(logdir=str(Path(cfg.OUTPUT_PATH) / 'tensorboard' / 'training_{}'.format(now_time)))
with DupStdoutFileManager(str(Path(cfg.OUTPUT_PATH) / ('train_log_' + now_time + '.log'))) as _:
print_easydict(cfg)
model = train_eval_model(model, criterion, optimizer, dataloader, tfboardwriter,
num_epochs=cfg.TRAIN.NUM_EPOCHS,
start_epoch=cfg.TRAIN.START_EPOCH)