Skip to content

This repository contains the source codes for the paper AtlasNet V2 - Learning Elementary Structures.

Notifications You must be signed in to change notification settings

theodeprelle/AtlasNetV2

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

13 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

teaset

AtlasNet V2 - Learning Elementary Structures

This work was build upon Thibault Groueix's AtlasNet and 3D-CODED projects. (you might want to have a look at those)

This repository contains the source codes for the paper AtlasNet V2 - Learning Elementary Structures.

Citing this work

If you find this work useful in your research, please consider citing:

@inproceedings{deprelle2019learning,
  title={Learning elementary structures for 3D shape generation and matching},
  author={Deprelle, Theo and Groueix, Thibault and Fisher, Matthew and Kim, Vladimir and Russell, Bryan and Aubry, Mathieu},
  booktitle={Advances in Neural Information Processing Systems},
  pages={7433--7443},
  year={2019}
}

Project Page

The project page is available http://imagine.enpc.fr/~deprellt/atlasnet2/

Install

Clone the repo and install dependencies

This implementation uses Pytorch.

## Download the repository
git clone https://github.com/TheoDEPRELLE/AtlasNetV2.git
cd AtlasNetV2
## Create python env with relevant packages
conda create --name atlasnetV2 python=3.7
source activate atlasnetV2
pip install pandas visdom
conda install pytorch torchvision -c pytorch
conda install -c conda-forge matplotlib
# you're done ! Congrats :)

Training

Data

cd data; ./download_data.sh; cd ..

We used the ShapeNet dataset for 3D models.

When using the provided data make sure to respect the shapenet license.

The trained models and some corresponding results are also available online :

Build chamfer distance

The chamfer loss is based on a custom cuda code that need to be compile.

source activate pytorch-atlasnet
cd ./extension
python setup.py install

Start training

  • First launch a visdom server :
python -m visdom.server -p 8888
  • Check out all the options :
git pull; python training/train.py --help
  • Run the baseline :
git pull; python training/train.py --model AtlasNet --adjust mlp
git pull; python training/train.py --model AtlasNet --adjust linear
  • Run the Patch Deformation module with the different adjustment modules :
git pull; python training/train.py --model PatchDeformation --adjust mlp
git pull; python training/train.py --model PatchDeformation --adjust linear
  • Run the Point Translation module with the different adjustment modules:
git pull; python training/train.py --model PointTranslation --adjust mlp
git pull; python training/train.py --model PointTranslation --adjust linear

Models

The models train on the SURREAL dataset for the FAUST competition can be found here

Acknowledgement

This work was partly supported by ANR project EnHerit ANR-17-CE23-0008, Labex Bezout, and gifts from Adobe to Ecole des Ponts.

License

MIT

About

This repository contains the source codes for the paper AtlasNet V2 - Learning Elementary Structures.

Topics

Resources

Stars

Watchers

Forks

Packages

No packages published

Contributors 3

  •  
  •  
  •