-
-
Notifications
You must be signed in to change notification settings - Fork 46.1k
/
Copy pathrat_in_maze.py
197 lines (178 loc) · 6.41 KB
/
rat_in_maze.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
from __future__ import annotations
def solve_maze(
maze: list[list[int]],
source_row: int,
source_column: int,
destination_row: int,
destination_column: int,
) -> list[list[int]]:
"""
This method solves the "rat in maze" problem.
Parameters :
- maze: A two dimensional matrix of zeros and ones.
- source_row: The row index of the starting point.
- source_column: The column index of the starting point.
- destination_row: The row index of the destination point.
- destination_column: The column index of the destination point.
Returns:
- solution: A 2D matrix representing the solution path if it exists.
Raises:
- ValueError: If no solution exists or if the source or
destination coordinates are invalid.
Description:
This method navigates through a maze represented as an n by n matrix,
starting from a specified source cell and
aiming to reach a destination cell.
The maze consists of walls (1s) and open paths (0s).
By providing custom row and column values, the source and destination
cells can be adjusted.
>>> maze = [[0, 1, 0, 1, 1],
... [0, 0, 0, 0, 0],
... [1, 0, 1, 0, 1],
... [0, 0, 1, 0, 0],
... [1, 0, 0, 1, 0]]
>>> solve_maze(maze,0,0,len(maze)-1,len(maze)-1) # doctest: +NORMALIZE_WHITESPACE
[[0, 1, 1, 1, 1],
[0, 0, 0, 0, 1],
[1, 1, 1, 0, 1],
[1, 1, 1, 0, 0],
[1, 1, 1, 1, 0]]
Note:
In the output maze, the zeros (0s) represent one of the possible
paths from the source to the destination.
>>> maze = [[0, 1, 0, 1, 1],
... [0, 0, 0, 0, 0],
... [0, 0, 0, 0, 1],
... [0, 0, 0, 0, 0],
... [0, 0, 0, 0, 0]]
>>> solve_maze(maze,0,0,len(maze)-1,len(maze)-1) # doctest: +NORMALIZE_WHITESPACE
[[0, 1, 1, 1, 1],
[0, 1, 1, 1, 1],
[0, 1, 1, 1, 1],
[0, 1, 1, 1, 1],
[0, 0, 0, 0, 0]]
>>> maze = [[0, 0, 0],
... [0, 1, 0],
... [1, 0, 0]]
>>> solve_maze(maze,0,0,len(maze)-1,len(maze)-1) # doctest: +NORMALIZE_WHITESPACE
[[0, 0, 0],
[1, 1, 0],
[1, 1, 0]]
>>> maze = [[1, 0, 0],
... [0, 1, 0],
... [1, 0, 0]]
>>> solve_maze(maze,0,1,len(maze)-1,len(maze)-1) # doctest: +NORMALIZE_WHITESPACE
[[1, 0, 0],
[1, 1, 0],
[1, 1, 0]]
>>> maze = [[1, 1, 0, 0, 1, 0, 0, 1],
... [1, 0, 1, 0, 0, 1, 1, 1],
... [0, 1, 0, 1, 0, 0, 1, 0],
... [1, 1, 1, 0, 0, 1, 0, 1],
... [0, 1, 0, 0, 1, 0, 1, 1],
... [0, 0, 0, 1, 1, 1, 0, 1],
... [0, 1, 0, 1, 0, 1, 1, 1],
... [1, 1, 0, 0, 0, 0, 0, 1]]
>>> solve_maze(maze,0,2,len(maze)-1,2) # doctest: +NORMALIZE_WHITESPACE
[[1, 1, 0, 0, 1, 1, 1, 1],
[1, 1, 1, 0, 0, 1, 1, 1],
[1, 1, 1, 1, 0, 1, 1, 1],
[1, 1, 1, 0, 0, 1, 1, 1],
[1, 1, 0, 0, 1, 1, 1, 1],
[1, 1, 0, 1, 1, 1, 1, 1],
[1, 1, 0, 1, 1, 1, 1, 1],
[1, 1, 0, 1, 1, 1, 1, 1]]
>>> maze = [[1, 0, 0],
... [0, 1, 1],
... [1, 0, 1]]
>>> solve_maze(maze,0,1,len(maze)-1,len(maze)-1)
Traceback (most recent call last):
...
ValueError: No solution exists!
>>> maze = [[0, 0],
... [1, 1]]
>>> solve_maze(maze,0,0,len(maze)-1,len(maze)-1)
Traceback (most recent call last):
...
ValueError: No solution exists!
>>> maze = [[0, 1],
... [1, 0]]
>>> solve_maze(maze,2,0,len(maze)-1,len(maze)-1)
Traceback (most recent call last):
...
ValueError: Invalid source or destination coordinates
>>> maze = [[1, 0, 0],
... [0, 1, 0],
... [1, 0, 0]]
>>> solve_maze(maze,0,1,len(maze),len(maze)-1)
Traceback (most recent call last):
...
ValueError: Invalid source or destination coordinates
"""
size = len(maze)
# Check if source and destination coordinates are Invalid.
if not (0 <= source_row <= size - 1 and 0 <= source_column <= size - 1) or (
not (0 <= destination_row <= size - 1 and 0 <= destination_column <= size - 1)
):
raise ValueError("Invalid source or destination coordinates")
# We need to create solution object to save path.
solutions = [[1 for _ in range(size)] for _ in range(size)]
solved = run_maze(
maze, source_row, source_column, destination_row, destination_column, solutions
)
if solved:
return solutions
else:
raise ValueError("No solution exists!")
def run_maze(
maze: list[list[int]],
i: int,
j: int,
destination_row: int,
destination_column: int,
solutions: list[list[int]],
) -> bool:
"""
This method is recursive starting from (i, j) and going in one of four directions:
up, down, left, right.
If a path is found to destination it returns True otherwise it returns False.
Parameters
maze: A two dimensional matrix of zeros and ones.
i, j : coordinates of matrix
solutions: A two dimensional matrix of solutions.
Returns:
Boolean if path is found True, Otherwise False.
"""
size = len(maze)
# Final check point.
if i == destination_row and j == destination_column and maze[i][j] == 0:
solutions[i][j] = 0
return True
lower_flag = (not i < 0) and (not j < 0) # Check lower bounds
upper_flag = (i < size) and (j < size) # Check upper bounds
if lower_flag and upper_flag:
# check for already visited and block points.
block_flag = (solutions[i][j]) and (not maze[i][j])
if block_flag:
# check visited
solutions[i][j] = 0
# check for directions
if (
run_maze(maze, i + 1, j, destination_row, destination_column, solutions)
or run_maze(
maze, i, j + 1, destination_row, destination_column, solutions
)
or run_maze(
maze, i - 1, j, destination_row, destination_column, solutions
)
or run_maze(
maze, i, j - 1, destination_row, destination_column, solutions
)
):
return True
solutions[i][j] = 1
return False
return False
if __name__ == "__main__":
import doctest
doctest.testmod(optionflags=doctest.NORMALIZE_WHITESPACE)