-
-
Notifications
You must be signed in to change notification settings - Fork 7.3k
/
lu_decomposition.h
102 lines (89 loc) · 2.66 KB
/
lu_decomposition.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
/**
* @file lu_decomposition.h
* @author [Krishna Vedala](https://github.com/kvedala)
* @brief Functions associated with [LU
* Decomposition](https://en.wikipedia.org/wiki/LU_decomposition)
* of a square matrix.
*/
#pragma once
#include <iostream>
#include <valarray>
#include <vector>
#ifdef _OPENMP
#include <omp.h>
#endif
/** Define matrix type as a `std::vector` of `std::valarray` */
template <typename T>
using matrix = std::vector<std::valarray<T>>;
/** Perform LU decomposition on matrix
* \param[in] A matrix to decompose
* \param[out] L output L matrix
* \param[out] U output U matrix
* \returns 0 if no errors
* \returns negative if error occurred
*/
template <typename T>
int lu_decomposition(const matrix<T> &A, matrix<double> *L, matrix<double> *U) {
int row, col, j;
int mat_size = A.size();
if (mat_size != A[0].size()) {
// check matrix is a square matrix
std::cerr << "Not a square matrix!\n";
return -1;
}
// regularize each row
for (row = 0; row < mat_size; row++) {
// Upper triangular matrix
#ifdef _OPENMP
#pragma omp for
#endif
for (col = row; col < mat_size; col++) {
// Summation of L[i,j] * U[j,k]
double lu_sum = 0.;
for (j = 0; j < row; j++) {
lu_sum += L[0][row][j] * U[0][j][col];
}
// Evaluate U[i,k]
U[0][row][col] = A[row][col] - lu_sum;
}
// Lower triangular matrix
#ifdef _OPENMP
#pragma omp for
#endif
for (col = row; col < mat_size; col++) {
if (row == col) {
L[0][row][col] = 1.;
continue;
}
// Summation of L[i,j] * U[j,k]
double lu_sum = 0.;
for (j = 0; j < row; j++) {
lu_sum += L[0][col][j] * U[0][j][row];
}
// Evaluate U[i,k]
L[0][col][row] = (A[col][row] - lu_sum) / U[0][row][row];
}
}
return 0;
}
/**
* Compute determinant of an NxN square matrix using LU decomposition.
* Using LU decomposition, the determinant is given by the product of diagonal
* elements of matrices L and U.
*
* @tparam T datatype of input matrix - int, unsigned int, double, etc
* @param A input square matrix
* @return determinant of matrix A
*/
template <typename T>
double determinant_lu(const matrix<T> &A) {
matrix<double> L(A.size(), std::valarray<double>(A.size()));
matrix<double> U(A.size(), std::valarray<double>(A.size()));
if (lu_decomposition(A, &L, &U) < 0)
return 0;
double result = 1.f;
for (size_t i = 0; i < A.size(); i++) {
result *= L[i][i] * U[i][i];
}
return result;
}