-
-
Notifications
You must be signed in to change notification settings - Fork 7.3k
/
maximum_circular_subarray.cpp
90 lines (75 loc) · 2.82 KB
/
maximum_circular_subarray.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
/**
* @file
* @brief C++ program for maximum contiguous circular sum problem using [Kadane's Algorithm](https://en.wikipedia.org/wiki/Maximum_subarray_problem)
* @details
* The idea is to modify Kadane’s algorithm to find a minimum contiguous subarray sum and the maximum contiguous subarray sum,
* then check for the maximum value between the max_value and the value left after subtracting min_value from the total sum.
* For more information, check [Geeks For Geeks](https://www.geeksforgeeks.org/maximum-contiguous-circular-sum/) explanation page.
*/
#include <cassert> /// for assert
#include <iostream> /// for IO operations
#include <vector> /// for std::vector
/**
* @namespace dynamic_programming
* @brief Dynamic Programming algorithms
*/
namespace dynamic_programming {
/**
* @brief returns the maximum contiguous circular sum of an array
*
* @param arr is the array/vector
* @return int which is the maximum sum
*/
int maxCircularSum(std::vector<int>& arr)
{
// Edge Case
if (arr.size() == 1)
return arr[0];
// Sum variable which stores total sum of the array.
int sum = 0;
for (int i = 0; i < arr.size(); i++) {
sum += arr[i];
}
// Every variable stores first value of the array.
int current_max = arr[0], max_so_far = arr[0], current_min = arr[0], min_so_far = arr[0];
// Concept of Kadane's Algorithm
for (int i = 1; i < arr.size(); i++) {
// Kadane's Algorithm to find Maximum subarray sum.
current_max = std::max(current_max + arr[i], arr[i]);
max_so_far = std::max(max_so_far, current_max);
// Kadane's Algorithm to find Minimum subarray sum.
current_min = std::min(current_min + arr[i], arr[i]);
min_so_far = std::min(min_so_far, current_min);
}
if (min_so_far == sum)
return max_so_far;
// Return the maximum value
return std::max(max_so_far, sum - min_so_far);
}
} // namespace dynamic_programming
/**
* @brief Self-test implementation
* @returns void
*/
static void test() {
// Description of the test
// Input: arr[] = {8, -8, 9, -9, 10, -11, 12}
// Output: 22
// Explanation: Subarray 12, 8, -8, 9, -9, 10 gives the maximum sum, that is 22.
int n = 7; // size of the array
std::vector<int> arr = {8, -8, 9, -9, 10, -11, 12};
assert(dynamic_programming::maxCircularSum(arr) == 22); // this ensures that the algorithm works as expected
arr = {8, -8, 10, -9, 10, -11, 12};
assert(dynamic_programming::maxCircularSum(arr) == 23);
std::cout << "All tests have successfully passed!\n";
}
/**
* @brief Main function
* @param argc commandline argument count (ignored)
* @param argv commandline array of arguments (ignored)
* @returns 0 on exit
*/
int main(int argc, char *argv[]) {
test(); // run self-test implementations
return 0;
}