Skip to content
This repository has been archived by the owner on May 14, 2024. It is now read-only.

Latest commit

 

History

History

depth_estimation

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 

Depth Estimation Benchmark

Introduction

Depth Estimation using monocular images is an emerging field of research and hos shown interesting progress.

Datasets

Models

Fast Depth

Dataset Model Name Input Size GigaMACs Delta1% Available Notes
NYUDepthV2 Fast Depth 224x224 0.3825 77.1 Y

MiDaS

Dataset Model Name Input Size GigaMACs Delta1% Available Notes
NYUDepthV2 MiDaS-small (v2.1) 256x256 4.633 86.67 Y

References

[1] NYUDepthV2: Nathan Silberman, Pushmeet Kohli, Derek Hoiem, Rob Fergus, Indoor Segmentation and Support Inference from RGBD Images, ECCV 2012, https://cs.nyu.edu/~silberman/datasets/nyu_depth_v2.html

[2] Wofk, Diana and Ma, Fangchang and Yang, Tien-Ju and Karaman, Sertac and Sze, Vivienne, FastDepth: Fast Monocular Depth Estimation on Embedded Systems, IEEE International Conference on Robotics and Automation (ICRA), 2019

[3] Rene Ranftl and Katrin Lasinger and David Hafner and Konrad Schindler and Vladlen Koltun, Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-shot Cross-dataset Transfer, IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2020