-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_dist_TVTSv2_ViT_B_32.py
218 lines (191 loc) · 9 KB
/
train_dist_TVTSv2_ViT_B_32.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import sys
sys.path.append('/path/to/TVTS/v2')
import argparse
import collections
import torch
import data_loader.data_loader as module_data
import model.loss as module_loss
import model.metric as module_metric
import model.model_dist_TVTSv2_ViT_B_32 as module_arch
import utils.visualizer as module_vis
from utils.util import replace_nested_dict_item
from parse_config_dist_multi import ConfigParser
from trainer import Trainer_TVTSv2_B_32
from sacred import Experiment
import transformers
import os
import torch.multiprocessing
from CLIP import clip
ex = Experiment('train')
@ex.main
def run():
logger = config.get_logger('train')
os.environ['TOKENIZERS_PARALLELISM'] = "false"
os.environ['TRANSFORMERS_OFFLINE'] = "1"
# TODO: improve Create identity (do nothing) visualiser?
if config['visualizer']['type'] != "":
visualizer = config.initialize(
name='visualizer',
module=module_vis,
exp_name=config['name'],
web_dir=config._web_log_dir
)
else:
visualizer = None
torch.cuda.set_device(args.local_rank)
torch.distributed.init_process_group(backend='nccl',
init_method='tcp://{}:{}'.format(
args.master_address, args.master_port),
rank=args.rank, world_size=args.world_size)
device = torch.device(f'cuda:{args.local_rank}')
print('world_size', args.world_size, flush=True)
print('local_rank: ', args.local_rank, flush=True)
tokenizer = clip.tokenize
# setup data_loader instances
data_loader, valid_data_loader = init_dataloaders(config, module_data)
print('Train dataset: ', [x.n_samples for x in data_loader], ' samples')
print('Val dataset: ', [x.n_samples for x in valid_data_loader], ' samples')
# build model architecture, then print to console
model = config.initialize('arch', module_arch)
if args.local_rank == 0:
logger.info(model)
# get function handles of loss and metrics
loss = config.initialize(name="loss", module=module_loss)
metrics = [getattr(module_metric, met) for met in config['metrics']]
# exclude all bias and LayerNorm parameters from weight decay
no_decay_names = ['bias', 'LayerNorm', 'ln_', 'norm']
text_tune_layers = ['resblocks.%d.' % i for i in range(9, 12)]
decay_clip_params, no_decay_clip_params = [], []
decay_new_params, no_decay_new_params = [], []
for name, param in model.named_parameters():
# CLIP visual branch
if 'video_model' in name:
if 'timeattn' in name or 'ln_3' in name:
if any(nd in name for nd in no_decay_names):
no_decay_new_params.append((name, param))
else:
decay_new_params.append((name, param))
else:
if any(nd in name for nd in no_decay_names):
no_decay_clip_params.append((name, param))
else:
decay_clip_params.append((name, param))
# CLIP text branch
elif 'text' in name:
if 'resblocks' in name:
if any(tl in name for tl in text_tune_layers):
if any(nd in name for nd in no_decay_names):
no_decay_clip_params.append((name, param))
else:
decay_clip_params.append((name, param))
else:
param.requires_grad = False
else:
if any(nd in name for nd in no_decay_names):
no_decay_clip_params.append((name, param))
else:
decay_clip_params.append((name, param))
# other parameters
else:
if any(nd in name for nd in no_decay_names):
no_decay_new_params.append((name, param))
else:
decay_new_params.append((name, param))
# for n, p in decay_new_params:
# print('decay_new_params: ', n)
# for n, p in no_decay_new_params:
# print('no_decay_new_params: ', n)
# for n, p in decay_clip_params:
# print('decay_clip_params: ', n)
# for n, p in no_decay_clip_params:
# print('no_decay_clip_params: ', n)
# exit(0)
optimizer_grouped_parameters = [
{'params': [p for n, p in decay_new_params], 'weight_decay': 0.05, 'lr': 1e-4},
{'params': [p for n, p in no_decay_new_params], 'weight_decay': 0, 'lr': 1e-4},
{'params': [p for n, p in decay_clip_params], 'weight_decay': 0.05, 'lr': 1e-7},
{'params': [p for n, p in no_decay_clip_params], 'weight_decay': 0, 'lr': 1e-7}
]
optimizer = transformers.AdamW(params=optimizer_grouped_parameters)
lr_scheduler = None
if 'lr_scheduler' in config._config:
if hasattr(transformers, config._config['lr_scheduler']['type']):
lr_scheduler = config.initialize('lr_scheduler', transformers, optimizer)
else:
print('lr scheduler not found')
if config['trainer']['neptune']:
writer = ex
else:
writer = None
trainer = Trainer_TVTSv2_B_32(args, model, loss, metrics, optimizer,
config=config,
data_loader=data_loader,
valid_data_loader=valid_data_loader,
lr_scheduler=lr_scheduler,
visualizer=visualizer,
writer=writer,
tokenizer=tokenizer,
max_samples_per_epoch=config['trainer']['max_samples_per_epoch'])
trainer.train()
def init_dataloaders(config, module_data):
"""
We need a way to change split from 'train' to 'val'.
"""
if "type" in config["data_loader"] and "args" in config["data_loader"]:
# then its a single dataloader
data_loader = [config.initialize("data_loader", module_data)]
config['data_loader']['args'] = replace_nested_dict_item(config['data_loader']['args'], 'split', 'val')
valid_data_loader = [config.initialize("data_loader", module_data)]
elif isinstance(config["data_loader"], list):
data_loader = [config.initialize('data_loader', module_data, index=idx) for idx in
range(len(config['data_loader']))]
new_cfg_li = []
for dl_cfg in config['data_loader']:
dl_cfg['args'] = replace_nested_dict_item(dl_cfg['args'], 'split', 'val')
new_cfg_li.append(dl_cfg)
config._config['data_loader'] = new_cfg_li
valid_data_loader = [config.initialize('data_loader', module_data, index=idx) for idx in
range(len(config['data_loader']))]
else:
raise ValueError("Check data_loader config, not correct format.")
return data_loader, valid_data_loader
if __name__ == '__main__':
args = argparse.ArgumentParser(description='PyTorch Template')
args.add_argument('-c', '--config', default=None, type=str,
help='config file path (default: None)')
args.add_argument('-r', '--resume', default=None, type=str,
help='path to latest checkpoint (default: None)')
args.add_argument('-d', '--device', default=None, type=str,
help='indices of GPUs to enable (default: all)')
args.add_argument('-o', '--observe', action='store_true',
help='Whether to observe (neptune)')
args.add_argument('-l', '--launcher', choices=['none', 'pytorch'], default='none', help='job launcher')
master_address = os.environ['MASTER_ADDR']
master_port = int(os.environ['MASTER_PORT'])
world_size = int(os.environ['WORLD_SIZE'])
rank = int(os.environ['RANK'])
local_rank = int(os.environ['LOCAL_RANK'])
args.add_argument('-ma', '--master_address', default=master_address)
args.add_argument('-mp', '--master_port', type=int, default=master_port)
args.add_argument('-ws', '--world_size', type=int, default=world_size)
args.add_argument('-rk', '--rank', type=int, default=rank)
args.add_argument('-k', '--local_rank', type=int, default=local_rank)
args.add_argument('-sc', '--schedule', nargs='+', type=int, default=[6, 8])
CustomArgs = collections.namedtuple('CustomArgs', 'flags type target')
options = [
CustomArgs(['-lr', '--learning_rate'], type=float, target=('optimizer', 'args', 'lr')),
CustomArgs(['-bs', '--batch_size'], type=int, target=('data_loader', 'args', 'batch_size')),
]
config = ConfigParser(args, options)
args = args.parse_args()
ex.add_config(config._config)
args.local_rank = int(os.environ['LOCAL_RANK'])
if config['trainer']['neptune']:
# delete this error if you have added your own neptune credentials neptune.ai
raise ValueError('Neptune credentials not set up yet.')
ex.observers.append(NeptuneObserver(
api_token='INSERT TOKEN',
project_name='INSERT PROJECT NAME'))
ex.run()
else:
run()