-
Notifications
You must be signed in to change notification settings - Fork 63
/
Copy pathutils.py
376 lines (332 loc) · 14.2 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
# -*- coding: utf-8 -*-
from __future__ import print_function
import json
import os
import struct
import sys
import platform
import re
import time
import traceback
import requests
import socket
import random
import math
import numpy as np
import torch
import logging
import datetime
from torch.optim.lr_scheduler import _LRScheduler
from torch import nn
import torch.nn.functional as F
from torch.nn.modules.loss import _WeightedLoss
def seed_all(seed_value, cuda_deterministic=False):
"""
set all random seeds
"""
random.seed(seed_value)
os.environ['PYTHONHASHSEED'] = str(seed_value)
np.random.seed(seed_value)
torch.manual_seed(seed_value)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed_value)
torch.cuda.manual_seed_all(seed_value)
# Speed-reproducibility tradeoff https://pytorch.org/docs/stable/notes/randomness.html
if cuda_deterministic: # slower, more reproducible
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
else: # faster, less reproducible
torch.backends.cudnn.deterministic = False
torch.backends.cudnn.benchmark = True
def set_log(logfileName, rank=-1):
"""
save log
"""
log_file_folder = os.path.dirname(logfileName)
time_now = datetime.datetime.now()
logfileName = f'{logfileName}_{time_now.year}_{time_now.month}_{time_now.day}_{time_now.hour}_{time_now.minute}.log'
if not os.path.exists(log_file_folder):
os.makedirs(log_file_folder)
else:
pass
logging.basicConfig(level=logging.INFO if rank in [-1, 0] else logging.WARN,
format='[%(asctime)s %(levelname)s %(filename)s line %(lineno)d %(process)d] %(message)s',
datefmt='[%X]',
handlers=[logging.FileHandler(logfileName), logging.StreamHandler()]
)
logger = logging.getLogger()
return logger
def save_ckpt(epoch, model, optimizer, scheduler, losses, model_name, ckpt_folder):
"""
save checkpoint
"""
if not os.path.exists(ckpt_folder):
os.makedirs(ckpt_folder)
torch.save(
{
'epoch': epoch,
'model_state_dict': model.module.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'scheduler_state_dict': scheduler.state_dict(),
'losses': losses,
},
f'{ckpt_folder}{model_name}_{epoch}.pth'
)
def save_simple_ckpt(model, model_name, ckpt_folder):
"""
save checkpoint
"""
if not os.path.exists(ckpt_folder):
os.makedirs(ckpt_folder)
torch.save(
{
'model_state_dict': model.module.state_dict()
},
f'{ckpt_folder}{model_name}.pth'
)
def save_best_ckpt(epoch, model, optimizer, scheduler, losses, model_name, ckpt_folder):
"""
save checkpoint
"""
if not os.path.exists(ckpt_folder):
os.makedirs(ckpt_folder)
torch.save(
{
'epoch': epoch,
'model_state_dict': model.module.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'scheduler_state_dict': scheduler.state_dict(),
'losses': losses,
},
f'{ckpt_folder}{model_name}_best.pth'
)
def get_reduced(tensor, current_device, dest_device, world_size):
"""
将不同GPU上的变量或tensor集中在主GPU上,并得到均值
"""
tensor = tensor.clone().detach() if torch.is_tensor(tensor) else torch.tensor(tensor)
tensor = tensor.to(current_device)
torch.distributed.reduce(tensor, dst=dest_device)
tensor_mean = tensor.item() / world_size
return tensor_mean
def get_ndtensor_reduced(tensor, current_device, dest_device, world_size):
"""
将不同GPU上的变量或tensor集中在主GPU上,并得到均值, 需要是2维张量
"""
tensor = tensor.clone().detach() if torch.is_tensor(tensor) else torch.tensor(tensor)
tensor = tensor.to(current_device)
torch.distributed.reduce(tensor, dst=dest_device)
tensor_mean = torch.zeros(tensor.shape)
if len(tensor.shape) == 2:
for i in range(tensor.shape[0]):
for j in range(tensor.shape[1]):
tensor_mean[i,j] = tensor[i,j].item() / world_size
elif len(tensor.shape) == 1:
for i in range(tensor.shape[0]):
tensor_mean[i] = tensor[i].item() / world_size
return tensor_mean
def numel(m: torch.nn.Module, only_trainable: bool = False):
"""
returns the total number of parameters used by `m` (only counting
shared parameters once); if `only_trainable` is True, then only
includes parameters with `requires_grad = True`
"""
parameters = m.parameters()
if only_trainable:
parameters = list(p for p in parameters if p.requires_grad)
unique = dict((p.data_ptr(), p) for p in parameters).values()
return sum(p.numel() for p in unique)
def label_smooth(y, K, epsilon=0.1):
"""
Label smoothing for multiclass labels
One hot encode labels `y` over `K` classes. `y` should be of the form [1, 6, 3, etc.]
"""
m = len(y)
out = np.ones((m, K)) * epsilon / K
for index in range(m):
out[index][y[index] - 1] += 1 - epsilon
return torch.tensor(out)
class SequentialDistributedSampler(torch.utils.data.sampler.Sampler):
"""
Distributed Sampler that subsamples indicies sequentially,
making it easier to collate all results at the end.
Even though we only use this sampler for eval and predict (no training),
which means that the model params won't have to be synced (i.e. will not hang
for synchronization even if varied number of forward passes), we still add extra
samples to the sampler to make it evenly divisible (like in `DistributedSampler`)
to make it easy to `gather` or `reduce` resulting tensors at the end of the loop.
"""
def __init__(self, dataset, batch_size, world_size, rank=None, num_replicas=None):
if num_replicas is None:
if not torch.distributed.is_available():
raise RuntimeError("Requires distributed package to be available")
num_replicas = world_size
if rank is None:
if not torch.distributed.is_available():
raise RuntimeError("Requires distributed package to be available")
rank = torch.distributed.get_rank()
self.dataset = dataset
self.num_replicas = num_replicas
self.rank = rank
self.batch_size = batch_size
self.num_samples = int(math.ceil(len(self.dataset) * 1.0 / self.batch_size / self.num_replicas)) * self.batch_size
self.total_size = self.num_samples * self.num_replicas
def __iter__(self):
indices = list(range(len(self.dataset)))
# add extra samples to make it evenly divisible
indices += [indices[-1]] * (self.total_size - len(indices))
# subsample
indices = indices[self.rank * self.num_samples : (self.rank + 1) * self.num_samples]
return iter(indices)
def __len__(self):
return self.num_samples
def distributed_concat(tensor, num_total_examples, world_size):
"""
合并不同进程的inference结果
"""
output_tensors = [tensor.clone() for _ in range(world_size)]
torch.distributed.all_gather(output_tensors, tensor)
concat = torch.cat(output_tensors, dim=0)
# truncate the dummy elements added by SequentialDistributedSampler
return concat[:num_total_examples]
class CosineAnnealingWarmupRestarts(_LRScheduler):
"""
optimizer (Optimizer): Wrapped optimizer.
first_cycle_steps (int): First cycle step size.
cycle_mult(float): Cycle steps magnification. Default: -1.
max_lr(float): First cycle's max learning rate. Default: 0.1.
min_lr(float): Min learning rate. Default: 0.001.
warmup_steps(int): Linear warmup step size. Default: 0.
gamma(float): Decrease rate of max learning rate by cycle. Default: 1.
last_epoch (int): The index of last epoch. Default: -1.
"""
def __init__(self,
optimizer : torch.optim.Optimizer,
first_cycle_steps : int,
cycle_mult : float = 1.,
max_lr : float = 0.1,
min_lr : float = 0.001,
warmup_steps : int = 0,
gamma : float = 1.,
last_epoch : int = -1
):
assert warmup_steps < first_cycle_steps
self.first_cycle_steps = first_cycle_steps # first cycle step size
self.cycle_mult = cycle_mult # cycle steps magnification
self.base_max_lr = max_lr # first max learning rate
self.max_lr = max_lr # max learning rate in the current cycle
self.min_lr = min_lr # min learning rate
self.warmup_steps = warmup_steps # warmup step size
self.gamma = gamma # decrease rate of max learning rate by cycle
self.cur_cycle_steps = first_cycle_steps # first cycle step size
self.cycle = 0 # cycle count
self.step_in_cycle = last_epoch # step size of the current cycle
super(CosineAnnealingWarmupRestarts, self).__init__(optimizer, last_epoch)
# set learning rate min_lr
self.init_lr()
def init_lr(self):
self.base_lrs = []
for param_group in self.optimizer.param_groups:
param_group['lr'] = self.min_lr
self.base_lrs.append(self.min_lr)
def get_lr(self):
if self.step_in_cycle == -1:
return self.base_lrs
elif self.step_in_cycle < self.warmup_steps:
return [(self.max_lr - base_lr)*self.step_in_cycle / self.warmup_steps + base_lr for base_lr in self.base_lrs]
else:
return [base_lr + (self.max_lr - base_lr) \
* (1 + math.cos(math.pi * (self.step_in_cycle-self.warmup_steps) \
/ (self.cur_cycle_steps - self.warmup_steps))) / 2
for base_lr in self.base_lrs]
def step(self, epoch=None):
if epoch is None:
epoch = self.last_epoch + 1
self.step_in_cycle = self.step_in_cycle + 1
if self.step_in_cycle >= self.cur_cycle_steps:
self.cycle += 1
self.step_in_cycle = self.step_in_cycle - self.cur_cycle_steps
self.cur_cycle_steps = int((self.cur_cycle_steps - self.warmup_steps) * self.cycle_mult) + self.warmup_steps
else:
if epoch >= self.first_cycle_steps:
if self.cycle_mult == 1.:
self.step_in_cycle = epoch % self.first_cycle_steps
self.cycle = epoch // self.first_cycle_steps
else:
n = int(math.log((epoch / self.first_cycle_steps * (self.cycle_mult - 1) + 1), self.cycle_mult))
self.cycle = n
self.step_in_cycle = epoch - int(self.first_cycle_steps * (self.cycle_mult ** n - 1) / (self.cycle_mult - 1))
self.cur_cycle_steps = self.first_cycle_steps * self.cycle_mult ** (n)
else:
self.cur_cycle_steps = self.first_cycle_steps
self.step_in_cycle = epoch
self.max_lr = self.base_max_lr * (self.gamma**self.cycle)
self.last_epoch = math.floor(epoch)
for param_group, lr in zip(self.optimizer.param_groups, self.get_lr()):
param_group['lr'] = lr
class DistanceLoss(_WeightedLoss):
"""
CrossEntropyLoss with Distance Weighted
"""
def __init__(self, weight=None, reduction='mean', ignore_index = None):
super().__init__(weight=weight, reduction=reduction)
self.weight = weight
self.reduction = reduction
self.ignore_index = ignore_index
def forward(self, inputs, targets):
if len(inputs.shape) > 2:
inputs = inputs.reshape(-1, inputs.size(-1))
if len(targets.shape) > 1:
targets = targets.reshape(-1)
if self.ignore_index is not None:
keep_index = (targets != self.ignore_index).nonzero(as_tuple=True)[0]
targets = torch.index_select(targets, 0, keep_index) #targets[targets != self.ignore_index]
inputs = torch.index_select(inputs, 0, keep_index)
lsm = F.log_softmax(inputs, -1)
targets = torch.empty(size=(targets.size(0), inputs.size(-1)), device=targets.device).fill_(0).scatter_(1, targets.data.unsqueeze(1), 1)
if self.weight is not None:
lsm = lsm * self.weight.unsqueeze(0)
loss = -(targets * lsm).sum(-1)
inputs = nn.Softmax(dim=-1)(inputs)[..., 1:-1].argmax(dim=-1) + 1
# print('inputs', inputs.device, inputs.shape)
targets = nn.Softmax(dim=-1)(targets)[..., 1:-1].argmax(dim=-1) + 1
# print('targets', targets.device, targets.shape)
distance = abs(inputs - targets) + 1e-2
# print('loss.shape', loss.shape)
# print('distance.shape', distance.shape)
loss = loss * distance
if self.reduction == 'sum':
loss = loss.sum()
elif self.reduction == 'mean':
loss = loss.mean()
return loss
class LabelSmoothCrossEntropyLoss(_WeightedLoss):
"""
CrossEntropyLoss with Label Somoothing
"""
def __init__(self, weight=None, reduction='mean', smoothing=0.0):
super().__init__(weight=weight, reduction=reduction)
self.smoothing = smoothing
self.weight = weight
self.reduction = reduction
@staticmethod
def _smooth_one_hot(targets: torch.Tensor, n_classes: int, smoothing=0.0):
assert 0 <= smoothing < 1
with torch.no_grad():
targets = torch.empty(size=(targets.size(0), n_classes),
device=targets.device) \
.fill_(smoothing / (n_classes - 1)) \
.scatter_(1, targets.data.unsqueeze(1), 1. - smoothing)
return targets
def forward(self, inputs, targets):
targets = LabelSmoothCrossEntropyLoss._smooth_one_hot(targets, inputs.size(-1),
self.smoothing)
lsm = F.log_softmax(inputs, -1)
if self.weight is not None:
lsm = lsm * self.weight.unsqueeze(0)
loss = -(targets * lsm).sum(-1)
if self.reduction == 'sum':
loss = loss.sum()
elif self.reduction == 'mean':
loss = loss.mean()
return loss