forked from aaalgo/kgraph
-
Notifications
You must be signed in to change notification settings - Fork 0
/
metric.cpp
252 lines (242 loc) · 7.62 KB
/
metric.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
#include "kgraph.h"
#include "kgraph-data.h"
namespace kgraph {
float float_l2sqr (float const *t1, float const *t2, unsigned dim) {
float sum = 0;
for (unsigned i = 0; i < dim; ++i) {
float v = t1[i] - t2[i];
sum += v * v;
}
return sum;
}
float float_l2sqr (float const *t1, unsigned dim) {
float sum = 0;
for (unsigned i = 0; i < dim; ++i) {
sum += t1[i] * t1[i];
}
return sum;
}
float float_dot (float const *t1, float const *t2, unsigned dim) {
float sum = 0;
for (unsigned i = 0; i < dim; ++i) {
sum += t1[i] * t2[i];
}
return sum;
}
}
#ifdef __GNUC__
#ifdef __AVX__
#include <immintrin.h>
#define AVX_L2SQR(addr1, addr2, dest, tmp1, tmp2) \
tmp1 = _mm256_loadu_ps(addr1);\
tmp2 = _mm256_loadu_ps(addr2);\
tmp1 = _mm256_sub_ps(tmp1, tmp2); \
tmp1 = _mm256_mul_ps(tmp1, tmp1); \
dest = _mm256_add_ps(dest, tmp1);
namespace kgraph {
float float_l2sqr_avx (float const *t1, float const *t2, unsigned dim) {
__m256 sum;
__m256 l0, l1, l2, l3;
__m256 r0, r1, r2, r3;
unsigned D = (dim + 7) & ~7U; // # dim aligned up to 256 bits, or 8 floats
unsigned DR = D % 32;
unsigned DD = D - DR;
const float *l = t1;
const float *r = t2;
const float *e_l = l + DD;
const float *e_r = r + DD;
float unpack[8] __attribute__ ((aligned (32))) = {0, 0, 0, 0, 0, 0, 0, 0};
float ret = 0.0;
sum = _mm256_load_ps(unpack);
switch (DR) {
case 24:
AVX_L2SQR(e_l+16, e_r+16, sum, l2, r2);
case 16:
AVX_L2SQR(e_l+8, e_r+8, sum, l1, r1);
case 8:
AVX_L2SQR(e_l, e_r, sum, l0, r0);
}
for (unsigned i = 0; i < DD; i += 32, l += 32, r += 32) {
AVX_L2SQR(l, r, sum, l0, r0);
AVX_L2SQR(l + 8, r + 8, sum, l1, r1);
AVX_L2SQR(l + 16, r + 16, sum, l2, r2);
AVX_L2SQR(l + 24, r + 24, sum, l3, r3);
}
_mm256_storeu_ps(unpack, sum);
ret = unpack[0] + unpack[1] + unpack[2] + unpack[3]
+ unpack[4] + unpack[5] + unpack[6] + unpack[7];
return ret;//sqrt(ret);
}
}
#endif
#ifdef __SSE2__
#include <xmmintrin.h>
#define SSE_L2SQR(addr1, addr2, dest, tmp1, tmp2) \
tmp1 = _mm_load_ps(addr1);\
tmp2 = _mm_load_ps(addr2);\
tmp1 = _mm_sub_ps(tmp1, tmp2); \
tmp1 = _mm_mul_ps(tmp1, tmp1); \
dest = _mm_add_ps(dest, tmp1);
namespace kgraph {
float float_l2sqr_sse2 (float const *t1, float const *t2, unsigned dim) {
__m128 sum;
__m128 l0, l1, l2, l3;
__m128 r0, r1, r2, r3;
unsigned D = (dim + 3) & ~3U;
unsigned DR = D % 16;
unsigned DD = D - DR;
const float *l = t1;
const float *r = t2;
const float *e_l = l + DD;
const float *e_r = r + DD;
float unpack[4] __attribute__ ((aligned (16))) = {0, 0, 0, 0};
float ret = 0.0;
sum = _mm_load_ps(unpack);
switch (DR) {
case 12:
SSE_L2SQR(e_l+8, e_r+8, sum, l2, r2);
case 8:
SSE_L2SQR(e_l+4, e_r+4, sum, l1, r1);
case 4:
SSE_L2SQR(e_l, e_r, sum, l0, r0);
}
for (unsigned i = 0; i < DD; i += 16, l += 16, r += 16) {
SSE_L2SQR(l, r, sum, l0, r0);
SSE_L2SQR(l + 4, r + 4, sum, l1, r1);
SSE_L2SQR(l + 8, r + 8, sum, l2, r2);
SSE_L2SQR(l + 12, r + 12, sum, l3, r3);
}
_mm_storeu_ps(unpack, sum);
ret = unpack[0] + unpack[1] + unpack[2] + unpack[3];
return ret;//sqrt(ret);
}
#define SSE_DOT(addr1, addr2, dest, tmp1, tmp2) \
tmp1 = _mm_load_ps(addr1);\
tmp2 = _mm_load_ps(addr2);\
tmp1 = _mm_mul_ps(tmp1, tmp2); \
dest = _mm_add_ps(dest, tmp1);
float float_dot_sse2 (float const *t1, float const *t2, unsigned dim) {
__m128 sum;
__m128 l0, l1, l2, l3;
__m128 r0, r1, r2, r3;
unsigned D = (dim + 3) & ~3U;
unsigned DR = D % 16;
unsigned DD = D - DR;
const float *l = t1;
const float *r = t2;
const float *e_l = l + DD;
const float *e_r = r + DD;
float unpack[4] __attribute__ ((aligned (16))) = {0, 0, 0, 0};
float ret = 0.0;
sum = _mm_load_ps(unpack);
switch (DR) {
case 12:
SSE_DOT(e_l+8, e_r+8, sum, l2, r2);
case 8:
SSE_DOT(e_l+4, e_r+4, sum, l1, r1);
case 4:
SSE_DOT(e_l, e_r, sum, l0, r0);
}
for (unsigned i = 0; i < DD; i += 16, l += 16, r += 16) {
SSE_DOT(l, r, sum, l0, r0);
SSE_DOT(l + 4, r + 4, sum, l1, r1);
SSE_DOT(l + 8, r + 8, sum, l2, r2);
SSE_DOT(l + 12, r + 12, sum, l3, r3);
}
_mm_storeu_ps(unpack, sum);
ret = unpack[0] + unpack[1] + unpack[2] + unpack[3];
return ret;//sqrt(ret);
}
#define SSE_L2SQR_1(addr1, dest, tmp1) \
tmp1 = _mm_load_ps(addr1);\
tmp1 = _mm_mul_ps(tmp1, tmp1); \
dest = _mm_add_ps(dest, tmp1);
float float_l2sqr_sse2 (float const *t1, unsigned dim) {
__m128 sum;
__m128 l0, l1, l2, l3;
unsigned D = (dim + 3) & ~3U;
unsigned DR = D % 16;
unsigned DD = D - DR;
const float *l = t1;
const float *e_l = l + DD;
float unpack[4] __attribute__ ((aligned (16))) = {0, 0, 0, 0};
float ret = 0.0;
sum = _mm_load_ps(unpack);
switch (DR) {
case 12:
SSE_L2SQR_1(e_l+8, sum, l2);
case 8:
SSE_L2SQR_1(e_l+4, sum, l1);
case 4:
SSE_L2SQR_1(e_l, sum, l0);
}
for (unsigned i = 0; i < DD; i += 16, l += 16) {
SSE_L2SQR_1(l, sum, l0);
SSE_L2SQR_1(l + 4, sum, l1);
SSE_L2SQR_1(l + 8, sum, l2);
SSE_L2SQR_1(l + 12, sum, l3);
}
_mm_storeu_ps(unpack, sum);
ret = unpack[0] + unpack[1] + unpack[2] + unpack[3];
return ret;//sqrt(ret);
}
}
/*
template <typename T>
void print_128 (__m128i v) {
static unsigned constexpr L = 16 / sizeof(T);
T unpack[L] __attribute__ ((aligned (16)));
_mm_store_si128((__m128i *)unpack, v);
cout << '(' << int(unpack[0]);
for (unsigned i = 1; i < L; ++i) {
cout << ',' << int(unpack[i]);
}
cout << ')';
}
*/
#define SSE_L2SQR_BYTE(addr1, addr2, sum, z) \
do { \
const __m128i o = _mm_load_si128((__m128i const *)(addr1));\
const __m128i p = _mm_load_si128((__m128i const *)(addr2));\
__m128i o1 = _mm_unpackhi_epi8(o,z); \
__m128i p1 = _mm_unpackhi_epi8(p,z); \
__m128i d = _mm_sub_epi16(o1, p1); \
sum = _mm_add_epi32(sum, _mm_madd_epi16(d, d)); \
o1 = _mm_unpacklo_epi8(o,z); \
p1 = _mm_unpacklo_epi8(p,z); \
d = _mm_sub_epi16(o1, p1); \
sum = _mm_add_epi32(sum, _mm_madd_epi16(d, d)); \
} while (false)
namespace kgraph {
float uint8_l2sqr_sse2 (uint8_t const *t1, uint8_t const *t2, unsigned dim) {
unsigned D = (dim + 0xFU) & ~0xFU; // actual dimension used in calculation, 0-padded
unsigned DR = D % 64; // process 32 dims per iteration
unsigned DD = D - DR;
const uint8_t *l = t1;
const uint8_t *r = t2;
const uint8_t *e_l = l + DD;
const uint8_t *e_r = r + DD;
int32_t unpack[4] __attribute__ ((aligned (16))) = {0, 0, 0, 0};
__m128i sum = _mm_load_si128((__m128i *)unpack);
const __m128i z = sum;
switch (DR) {
case 48:
SSE_L2SQR_BYTE(e_l+32, e_r+32, sum, z);
case 32:
SSE_L2SQR_BYTE(e_l+16, e_r+16, sum, z);
case 16:
SSE_L2SQR_BYTE(e_l, e_r, sum, z);
}
for (unsigned i = 0; i < DD; i += 64, l += 64, r += 64) {
SSE_L2SQR_BYTE(l, r, sum, z);
SSE_L2SQR_BYTE(l + 16, r + 16, sum, z);
SSE_L2SQR_BYTE(l + 32, r + 32, sum, z);
SSE_L2SQR_BYTE(l + 48, r + 48, sum, z);
}
_mm_store_si128((__m128i *)unpack, sum);
int32_t ret = unpack[0] + unpack[1] + unpack[2] + unpack[3];
return float(ret);//sqrt(ret);
}
}
#endif
#endif