forked from etotheipi/BitcoinArmory
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathunittest.py
2238 lines (1773 loc) · 88.7 KB
/
unittest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
################################################################################
#
# Copyright (C) 2011-2013, Alan C. Reiner <[email protected]>
# Distributed under the GNU Affero General Public License (AGPL v3)
# See LICENSE or http://www.gnu.org/licenses/agpl.html
#
################################################################################
from armoryengine import *
import CppBlockUtils as Cpp
import armoryengine
LE = LITTLEENDIAN
BE = BIGENDIAN
Test_BasicUtils = False
Test_PyBlockUtils = False
Test_CppBlockUtils = False
Test_SimpleAddress = False
Test_MultiSigTx = False
Test_TxSimpleCreate = False
Test_EncryptedAddress = False
Test_EncryptedWallet = False
Test_TxDistProposals = False
Test_SelectCoins = False
Test_CryptoTiming = False
Test_NetworkObjects = False
Test_ReactorLoop = False
Test_SettingsFile = False
Test_WalletMigrate = False
Test_AddressBooks = False
Test_URIParse = False
Test_BkgdThread = False
Test_AsyncBDM = False
Test_Timers = True
'''
import optparse
parser = optparse.OptionParser(usage="%prog [options]\n"+
"Connects to a running bitcoin node and "+
"prints all or part of the best-block-chain.")
parser.add_option("--testnet", dest="testnet", action="store_true", default=False,
help="Speak testnet protocol")
(options, args) = parser.parse_args()
'''
def testFunction( fnName, expectedOutput, *args, **kwargs):
"""
Provide a function name, inputs and some known outputs
Prints a pass/fail string if the outputs match
"""
fn = getattr(armoryengine, fnName)
actualOutput = fn(*args,**kwargs)
testPassed = (expectedOutput == actualOutput)
passStr = '____PASS____' if testPassed else '***FAIL***'
print '\t', passStr, '( function:', fnName, ')'
if not testPassed:
print '\t','___Inputs___:', args
print '\t','___ExpOut___:', expectedOutput
print '\t','___ActOut___:', actualOutput
def printpassorfail(abool):
"""
Print a simple, formatted pass/fail string
"""
w = 60
if abool:
print '\n' + ' '*w + '*** PASSED ***',
else:
print '\n' + ' '*w + '___ FAILED ___',
################################################################################
################################################################################
if Test_BasicUtils:
print ''
print ''
print '*** Running Bitcoin engine unit tests ***'
addr = '1Ncui8YjT7JJD91tkf42dijPnqywbupf7w' # Sam Rushing's BTC address
i = 4093
hstr = 'fd0f'
bstr = '\xfd\x0f'
testFunction('int_to_hex', hstr, i )
testFunction('hex_to_int', i, hstr)
testFunction('int_to_binary', bstr, i )
testFunction('binary_to_int', i, bstr)
testFunction('hex_to_binary', bstr, hstr)
testFunction('binary_to_hex', hstr, bstr)
testFunction('hex_switchEndian', '67452301', '01234567')
hstr = '0ffd'
bstr = '\x0f\xfd'
testFunction('int_to_hex', hstr, i , 2, BIGENDIAN)
testFunction('hex_to_int', i, hstr, BIGENDIAN)
testFunction('int_to_binary', bstr, i , 2, BIGENDIAN)
testFunction('binary_to_int', i, bstr, BIGENDIAN)
#h = '00000123456789abcdef000000'
#ans = 'aaaaabcdeghjknrsuwxyaaaaaa'
#testFunction('binary_to_typingBase16', ans, h )
#testFunction('typingBase16_to_binary', h, ans)
blockhead = '010000001d8f4ec0443e1f19f305e488c1085c95de7cc3fd25e0d2c5bb5d0000000000009762547903d36881a86751f3f5049e23050113f779735ef82734ebf0b4450081d8c8c84db3936a1a334b035b'
blockhash = '1195e67a7a6d0674bbd28ae096d602e1f038c8254b49dfe79d47000000000000'
blockhashBE = '000000000000479de7df494b25c838f0e102d696e08ad2bb74066d7a7ae69511'
testFunction('ubtc_to_floatStr', '12.05600000', 1205600000)
testFunction('floatStr_to_ubtc', 1205600000, '12.056')
testFunction('float_to_btc', 1205600000, 12.056)
testFunction('packVarInt', ['A',1], 65)
testFunction('packVarInt', ['\xfd\xff\x00', 3], 255)
testFunction('packVarInt', ['\xfe\x00\x00\x01\x00', 5], 65536)
testFunction('packVarInt', ['\xff\x00\x10\xa5\xd4\xe8\x00\x00\x00', 9], 10**12)
testFunction('unpackVarInt', [65,1], 'A')
testFunction('unpackVarInt', [255, 3], '\xfd\xff\x00')
testFunction('unpackVarInt', [65536, 5], '\xfe\x00\x00\x01\x00')
testFunction('unpackVarInt', [10**12, 9], '\xff\x00\x10\xa5\xd4\xe8\x00\x00\x00')
data = hex_to_binary('11' + 'aa'*31)
dataBE = hex_to_binary('11' + 'aa'*31, endIn=LITTLEENDIAN, endOut=BIGENDIAN)
dataE1 = hex_to_binary('11' + 'aa'*30 + 'ab')
dataE2 = hex_to_binary('11' + 'aa'*29 + 'abab')
dchk = hash256(data)[:4]
testFunction('verifyChecksum', data, data, dchk)
testFunction('verifyChecksum', data, dataBE, dchk, beQuiet=True)
testFunction('verifyChecksum', '', dataE1, dchk, hash256, False, True) # don't fix
testFunction('verifyChecksum', data, dataE1, dchk, hash256, True, True) # try fix
testFunction('verifyChecksum', '', dataE2, dchk, hash256, False, True) # don't fix
testFunction('verifyChecksum', '', dataE2, dchk, hash256, True, True) # try fix
verTuple = (0,50,0,0)
verInt = 5000000
verStr = '0.50'
testFunction('getVersionString', verStr, verTuple)
testFunction('getVersionInt', verInt, verTuple)
testFunction('readVersionString', verTuple, verStr)
testFunction('readVersionInt', verTuple, verInt)
verTuple = (1,0,12,0)
verInt = 10012000
verStr = '1.00.12'
testFunction('getVersionString', verStr, verTuple)
testFunction('getVersionInt', verInt, verTuple)
testFunction('readVersionString', verTuple, verStr)
testFunction('readVersionInt', verTuple, verInt)
verTuple = (0,20,0,108)
verInt = 2000108
verStr = '0.20.0.108'
testFunction('getVersionString', verStr, verTuple)
testFunction('getVersionInt', verInt, verTuple)
testFunction('readVersionString', verTuple, verStr)
testFunction('readVersionInt', verTuple, verInt)
miniKey = 'S4b3N3oGqDqR5jNuxEvDwf'
miniPriv = hex_to_binary('0c28fca386c7a227600b2fe50b7cae11ec86d3bf1fbe471be89827e19d72aa1d')
testFunction('decodeMiniPrivateKey', miniPriv, miniKey)
print 'Testing coin2str method'
def printC2S(c):
print str(c).rjust(16),
print coin2str(c).rjust(16),
print coin2str(c,4).rjust(16),
print coin2str(c,2).rjust(16),
print coin2str(c,0).rjust(16),
print coin2str(c,8, maxZeros=6).rjust(16),
print coin2str(c,8, maxZeros=2).rjust(16),
print coin2str(c,6, maxZeros=4).rjust(16),
print coin2str_approx(c,3)
printC2S(0)
printC2S(1)
printC2S(100)
printC2S(10000)
printC2S(10111)
printC2S(10000000)
printC2S(100000000)
printC2S(1241110000)
printC2S(10000099080)
printC2S(10000099000)
printC2S(10000909001)
printC2S(12345678900)
printC2S(98753178900)
printC2S(-1)
printC2S(-100)
printC2S(-10000)
printC2S(-10000000)
printC2S(-10000090000)
printC2S(-10000990000)
printC2S(-10009090001)
printC2S(-10001090000)
# Unserialize an reserialize
tx1raw = hex_to_binary( \
'01000000016290dce984203b6a5032e543e9e272d8bce934c7de4d15fa0fe44d'
'd49ae4ece9010000008b48304502204f2fa458d439f957308bca264689aa175e'
'3b7c5f78a901cb450ebd20936b2c500221008ea3883a5b80128e55c9c6070aa6'
'264e1e0ce3d18b7cd7e85108ce3d18b7419a0141044202550a5a6d3bb81549c4'
'a7803b1ad59cdbba4770439a4923624a8acfc7d34900beb54a24188f7f0a4068'
'9d905d4847cc7d6c8d808a457d833c2d44ef83f76bffffffff0242582c0a0000'
'00001976a914c1b4695d53b6ee57a28647ce63e45665df6762c288ac80d1f008'
'000000001976a9140e0aec36fe2545fb31a41164fb6954adcd96b34288ac00000000')
tx2raw = hex_to_binary( \
'0100000001f658dbc28e703d86ee17c9a2d3b167a8508b082fa0745f55be5144'
'a4369873aa010000008c49304602210041e1186ca9a41fdfe1569d5d807ca7ff'
'6c5ffd19d2ad1be42f7f2a20cdc8f1cc0221003366b5d64fe81e53910e156914'
'091d12646bc0d1d662b7a65ead3ebe4ab8f6c40141048d103d81ac9691cf13f3'
'fc94e44968ef67b27f58b27372c13108552d24a6ee04785838f34624b294afee'
'83749b64478bb8480c20b242c376e77eea2b3dc48b4bffffffff0200e1f50500'
'0000001976a9141b00a2f6899335366f04b277e19d777559c35bc888ac40aeeb'
'02000000001976a9140e0aec36fe2545fb31a41164fb6954adcd96b34288ac00000000')
tx1 = PyTx().unserialize(tx1raw)
tx2 = PyTx().unserialize(tx2raw)
tx1again = tx1.serialize()
tx2again = tx2.serialize()
################################################################################
################################################################################
if Test_PyBlockUtils:
print ''
print 'Testing transaction serialization round trip:'
print '\t Tx1 == PyTx().unserialize( Tx1.serialize() ) ? ',
printpassorfail(tx1raw == tx1again)
print ''
print '\t Tx2 == PyTx().unserialize( Tx2.serialize() ) ? ',
printpassorfail(tx2raw == tx2again)
print ''
# Here's a full block, which we should be able to parse and process
hexBlock = (
'01000000eb10c9a996a2340a4d74eaab41421ed8664aa49d18538bab59010000000000005a2f06efa9f2bd804f17877537f2080030cadbfa1eb50e02338117cc'
'604d91b9b7541a4ecfbb0a1a64f1ade70301000000010000000000000000000000000000000000000000000000000000000000000000ffffffff0804cfbb0a1a'
'02360affffffff0100f2052a01000000434104c2239c4eedb3beb26785753463be3ec62b82f6acd62efb65f452f8806f2ede0b338e31d1f69b1ce449558d7061'
'aa1648ddc2bf680834d3986624006a272dc21cac000000000100000003e8caa12bcb2e7e86499c9de49c45c5a1c6167ea4b894c8c83aebba1b6100f343010000'
'008c493046022100e2f5af5329d1244807f8347a2c8d9acc55a21a5db769e9274e7e7ba0bb605b26022100c34ca3350df5089f3415d8af82364d7f567a6a297f'
'cc2c1d2034865633238b8c014104129e422ac490ddfcb7b1c405ab9fb42441246c4bca578de4f27b230de08408c64cad03af71ee8a3140b40408a7058a1984a9'
'f246492386113764c1ac132990d1ffffffff5b55c18864e16c08ef9989d31c7a343e34c27c30cd7caa759651b0e08cae0106000000008c4930460221009ec9aa'
'3e0caf7caa321723dea561e232603e00686d4bfadf46c5c7352b07eb00022100a4f18d937d1e2354b2e69e02b18d11620a6a9332d563e9e2bbcb01cee559680a'
'014104411b35dd963028300e36e82ee8cf1b0c8d5bf1fc4273e970469f5cb931ee07759a2de5fef638961726d04bd5eb4e5072330b9b371e479733c942964bb8'
'6e2b22ffffffff3de0c1e913e6271769d8c0172cea2f00d6d3240afc3a20f9fa247ce58af30d2a010000008c493046022100b610e169fd15ac9f60fe2b507529'
'281cf2267673f4690ba428cbb2ba3c3811fd022100ffbe9e3d71b21977a8e97fde4c3ba47b896d08bc09ecb9d086bb59175b5b9f03014104ff07a1833fd8098b'
'25f48c66dcf8fde34cbdbcc0f5f21a8c2005b160406cbf34cc432842c6b37b2590d16b165b36a3efc9908d65fb0e605314c9b278f40f3e1affffffff0240420f'
'00000000001976a914adfa66f57ded1b655eb4ccd96ee07ca62bc1ddfd88ac007d6a7d040000001976a914981a0c9ae61fa8f8c96ae6f8e383d6e07e77133e88'
'ac00000000010000000138e7586e0784280df58bd3dc5e3d350c9036b1ec4107951378f45881799c92a4000000008a47304402207c945ae0bbdaf9dadba07bdf'
'23faa676485a53817af975ddf85a104f764fb93b02201ac6af32ddf597e610b4002e41f2de46664587a379a0161323a85389b4f82dda014104ec8883d3e4f7a3'
'9d75c9f5bb9fd581dc9fb1b7cdf7d6b5a665e4db1fdb09281a74ab138a2dba25248b5be38bf80249601ae688c90c6e0ac8811cdb740fcec31dffffffff022f66'
'ac61050000001976a914964642290c194e3bfab661c1085e47d67786d2d388ac2f77e200000000001976a9141486a7046affd935919a3cb4b50a8a0c233c286c'
'88ac00000000')
blk = PyBlock().unserialize( hex_to_binary(hexBlock) )
blockReHex = binary_to_hex(blk.serialize())
print ''
print 'Testing block serialization round trip:'
print '\t theBlock == Block().unserialize( theBlock.serialize() ) ? ',
printpassorfail(hexBlock == blockReHex)
print ''
binRoot = blk.blockData.getMerkleRoot()
print ''
print 'Testing merkle tree calculation:'
print '\tMerkleRoot in block header:', binary_to_hex(blk.blockHeader.merkleRoot)
print '\tMerkleRoot calculated: ', binary_to_hex(binRoot)
print '\tRoot calculation verified? ',
printpassorfail(blk.blockHeader.merkleRoot == blk.blockData.merkleRoot)
print ''
print ''
################################################################################
################################################################################
if Test_CppBlockUtils:
print '\n\nLoading Blockchain from:', BLK0001_PATH
BDM_LoadBlockchainFile(BLK0001_PATH)
print 'Done!'
print '\n\nCurrent Top Block is:', TheBDM.getTopBlockHeader().getBlockHeight()
TheBDM.getTopBlockHeader().pprint()
#print '\n\nChecking integrity of blockchain:'
#result = TheBDM.verifyBlkFileIntegrity()
#print 'Done!',
#if result==True:
#print 'No errors detected in the blk0001.dat file'
#else:
#print 'Integrity check failed! Something is wrong with your blk0001.dat file.'
cppWlt = Cpp.BtcWallet()
if not USE_TESTNET:
cppWlt.addAddress_1_(hex_to_binary("604875c897a079f4db88e5d71145be2093cae194"))
cppWlt.addAddress_1_(hex_to_binary("8996182392d6f05e732410de4fc3fa273bac7ee6"))
cppWlt.addAddress_1_(hex_to_binary("b5e2331304bc6c541ffe81a66ab664159979125b"))
cppWlt.addAddress_1_(hex_to_binary("ebbfaaeedd97bc30df0d6887fd62021d768f5cb8"))
cppWlt.addAddress_1_(hex_to_binary("11b366edfc0a8b66feebae5c2e25a7b6a5d1cf31"))
else:
# Test-network addresses
cppWlt.addAddress_1_(hex_to_binary("5aa2b7e93537198ef969ad5fb63bea5e098ab0cc"))
cppWlt.addAddress_1_(hex_to_binary("28b2eb2dc53cd15ab3dc6abf6c8ea3978523f948"))
cppWlt.addAddress_1_(hex_to_binary("720fbde315f371f62c158b7353b3629e7fb071a8"))
cppWlt.addAddress_1_(hex_to_binary("0cc51a562976a075b984c7215968d41af43be98f"))
cppWlt.addAddress_1_(hex_to_binary("57ac7bfb77b1f678043ac6ea0fa67b4686c271e5"))
cppWlt.addAddress_1_(hex_to_binary("b11bdcd6371e5b567b439cd95d928e869d1f546a"))
cppWlt.addAddress_1_(hex_to_binary("2bb0974f6d43e3baa03d82610aac2b6ed017967d"))
cppWlt.addAddress_1_(hex_to_binary("61d62799e52bc8ee514976a19d67478f25df2bb1"))
# We do the scan three times to make sure that there are no problems
# with rescanning the same tx's multiple times (it's bound to happen
# so might as well make sure it's robust)
TheBDM.scanBlockchainForTx(cppWlt)
TheBDM.scanBlockchainForTx(cppWlt)
TheBDM.scanBlockchainForTx(cppWlt)
nAddr = cppWlt.getNumAddr()
print 'Address Balances:'
for i in range(nAddr):
cppAddr = cppWlt.getAddrByIndex(i)
bal = cppAddr.getBalance()
print ' %s %s' % (hash160_to_addrStr(cppAddr.getAddrStr20())[:12], coin2str(bal))
leVect = cppWlt.getTxLedger()
print '\n\nLedger for all Addr:'
for le in leVect:
pprintLedgerEntry(le, ' '*3)
#TestNonStd
# Not sure what happened to this test...
#bdm.findAllNonStdTx();
################################################################################
################################################################################
if Test_SimpleAddress:
# Execute the tests with Satoshi's public key from the Bitcoin specification page
satoshiPubKeyHex = '04fc9702847840aaf195de8442ebecedf5b095cdbb9bc716bda9110971b28a49e0ead8564ff0db22209e0374782c093bb899692d524e9d6a6956e7c5ecbcd68284'
satoshiAddrStr = '1AGRxqDa5WjUKBwHB9XYEjmkv1ucoUUy1s'
addrPiece1Hex = '65a4358f4691660849d9f235eb05f11fabbd69fa'
addrPiece2Hex = 'd8b2307a'
addrPiece1Bin = hex_to_binary(addrPiece1Hex)
addrPiece2Bin = hex_to_binary(addrPiece2Hex)
print '\nTesting ECDSA key/address methods:'
print "\tSatoshi's PubKey: ", satoshiPubKeyHex[:32], '...'
print "\tSatoshi's Address: ", satoshiAddrStr
saddr = PyBtcAddress().createFromPublicKey( hex_to_binary(satoshiPubKeyHex) )
print ''
print '\tAddr calc from pubkey: ', saddr.calculateAddrStr()
print '\tAddress is valid: ', checkAddrStrValid(satoshiAddrStr)
################################################################################
addr = PyBtcAddress().createNewRandomAddress()
msg = int_to_binary(39029348428)
theHash = hash256(msg)
derSig = addr.generateDERSignature(theHash)
print 'Testing ECDSA signing & verification -- arbitrary binary strings:',
printpassorfail( addr.verifyDERSignature( theHash, derSig))
print ''
################################################################################
# From tx tests before, we have tx1 and tx2, where tx2 uses and output from tx1
sp = PyScriptProcessor()
sp.setTxObjects(tx1, tx2, 0)
print 'Testing ECDSA signing & verification -- two linked transactions: ',
printpassorfail( sp.verifyTransactionValid() )
print ''
################################################################################
################################################################################
if Test_NetworkObjects:
print '\n'
print '*********************************************************************'
print 'Testing networking object ser/unser tests'
print '*********************************************************************'
print ''
print 'Testing standard IPv4 address conversions'
addrQuad = (192, 168, 1, 125)
print addrQuad, '-->', quad_to_str(addrQuad)
addrBin = quad_to_binary( addrQuad)
print addrQuad, '-->', binary_to_hex(addrBin)
print binary_to_hex(addrBin), '-->', binary_to_quad(addrBin)
addrStr = '192.168.1.125'
print addrStr, '-->', str_to_quad(addrStr)
netAddrHex = ('f9beb4d9 61646472 00000000 00000000'
'1f000000 689dcea8 01d6c7db 4e010000'
'00000000 00000000 00000000 000000ff'
'ff0233b6 ec208d' ).replace(' ','')
invHex = ('f9beb4d9 696e7600 00000000 00000000'
'25000000 fef89552 01010000 0021eca1'
'50d3f7cd 5eca5ada 7ad02f8f 3bf38420'
'0cb53e8d d51b153d e92bac7a 1b' ).replace(' ','')
getDataHex = ('f9beb4d9 67657464 61746100 00000000'
'25000000 f51e33f8 01010000 0018c643'
'1b6200ec 361a9e80 31c174ad 5e4fc5f9'
'26b2f2df d3acdb62 7cbf87b8 20' ).replace(' ','')
msgtxHex = (
'f9beb4d9 74780000 00000000 00000000 02010000 18c6431b 01000000 01bc9ea8'
'21256fb0 eb081274 bc7afdde 6d5a4b63 6c55cfbe 2befa8f0 0a1c79e5 fc000000'
'008b4830 45022009 4e0a68c5 5d515b23 310cc0e2 227bbfb8 cd775bb7 f9bedff1'
'01ba06a0 637bee02 2100f81a 11389610 ab92d592 de1cc283 5f0804a0 49baae8b'
'd20b4aeb e29cbb82 6aba0141 04fc5c28 d283c217 a857ae2a bfebcf11 33dec9d5'
'd51bb918 c5d75326 2b3cc90a 48504bde 41993614 be6ea62e e531ce4a 4723b550'
'b3e50492 f320c65d 10d021a2 45ffffff ff02002f 5f1c0000 00001976 a914835b'
'78efa362 ad78474c 14c2043b 35adc697 706a88ac 807f3d36 00000000 1976a914'
'188f9581 3b59ca6b 8e9eadc6 9fecd33e c48d65de 88ac0000 0000'
).replace(' ','')
msgVerHex = (
'f9beb4d9 76657273 696f6e00 00000000 55000000 409c0000 01000000 00000000'
'ff4edc4e 00000000 01000000 00000000 00000000 00000000 0000ffff 7f000001'
'208d0100 00000000 00000000 00000000 00000000 ffff7f00 0001d447 61d0a76a'
'8ad8e4c7 00ffffff ff' ).replace(' ','')
msgVerack = ('f9beb4d9 76657261 636b0000 00000000 00000000').replace(' ','')
msgblk = ''
if os.path.exists('msgblock.bin'):
with open('msgblock.bin') as f:
msgblk = f.read()
msgTest = PyMessage().unserialize(hex_to_binary(msgVerHex))
msgTest.pprint()
ser = msgTest.serialize()
msgTest = PyMessage().unserialize(ser)
msgTest.pprint()
printpassorfail(ser==msgTest.serialize())
msgTest = PyMessage().unserialize(hex_to_binary(msgVerack))
msgTest.pprint()
ser = msgTest.serialize()
msgTest = PyMessage().unserialize(ser)
msgTest.pprint()
printpassorfail(ser==msgTest.serialize())
msgTest = PyMessage().unserialize(hex_to_binary(netAddrHex))
msgTest.pprint()
ser = msgTest.serialize()
msgTest = PyMessage().unserialize(ser)
msgTest.pprint()
printpassorfail(ser==msgTest.serialize())
msgTest = PyMessage().unserialize(hex_to_binary(invHex))
msgTest.pprint()
ser = msgTest.serialize()
msgTest = PyMessage().unserialize(ser)
msgTest.pprint()
printpassorfail(ser==msgTest.serialize())
msgTest = PyMessage().unserialize(hex_to_binary(getDataHex))
msgTest.pprint()
ser = msgTest.serialize()
msgTest = PyMessage().unserialize(ser)
msgTest.pprint()
printpassorfail(ser==msgTest.serialize())
msgTest = PyMessage().unserialize(hex_to_binary(msgtxHex))
msgTest.pprint()
ser = msgTest.serialize()
msgTest = PyMessage().unserialize(ser)
msgTest.pprint()
printpassorfail(ser==msgTest.serialize())
# 36 kB of data on the screen is unnecessary under most circumstances...
print '\n\nTesting blk data reading:'
msgTest = PyMessage().unserialize(msgblk)
#msgTest.pprint()
msgTest.payload.header.pprint(nIndent=1)
print ' NumTx: ', len(msgTest.payload.txList)
print ' ...\n'
ser = msgTest.serialize()
msgTest = PyMessage().unserialize(ser)
msgTest.payload.header.pprint(nIndent=1)
print ' NumTx: ', len(msgTest.payload.txList)
print ' ...\n'
#msgTest.pprint()
printpassorfail(ser==msgTest.serialize())
if Test_ReactorLoop:
################################################################################
# Now test the networking: must have Satoshi client open
print '\n\n'
print 'Running python-twisted networking/reactor tests'
print 'If this test works, it will connect to the localhost'
print 'Bitcoin client, display all incoming messages, and'
print 'request new transactions that we see from inv messages.'
print 'You will have to manually stop this test with ctrl-C'
from twisted.internet.protocol import Protocol, ClientFactory
from twisted.internet.defer import Deferred
from twisted.internet import reactor
# Load blockchain so that we can test ALL the code
BDM_LoadBlockchainFile()
btcNetFactory = None
def restartConnection(protoObj, failReason):
print '!Trying to restart connection'
from twisted.internet import reactor
reactor.connectTCP(protoObj.peer[0], protoObj.peer[1], btcNetFactory)
# On handshake complete, do nothing special, but we do want to tell it to
# restart the connection
btcNetFactory = ArmoryClientFactory( \
def_handshake=None, \
func_loseConnect=restartConnection)
from twisted.internet import reactor
reactor.connectTCP('127.0.0.1', BITCOIN_PORT, btcNetFactory)
reactor.run()
################################################################################
################################################################################
if Test_TxSimpleCreate:
print 'Testing PyCreateAndSignTx'
AddrA = PyBtcAddress().createFromPrivateKey(hex_to_int('aa'*32))
AddrB = PyBtcAddress().createFromPrivateKey(hex_to_int('bb'*32))
print ' Address A:', AddrA.getAddrStr()
print ' Address B:', AddrB.getAddrStr()
# This TxIn will be completely ignored, so it can contain garbage
txinA = PyTxIn()
txinA.outpoint = PyOutPoint().unserialize(hex_to_binary('00'*36))
txinA.binScript = hex_to_binary('99'*4)
txinA.sequence = hex_to_binary('ff'*4)
txoutA = PyTxOut()
txoutA.value = 50 * ONE_BTC
txoutA.binScript = '\x76\xa9\x14' + AddrA.getAddr160() + '\x88\xac'
tx1 = PyTx()
tx1.version = 1
tx1.numInputs = 1
tx1.inputs = [txinA]
tx1.numOutputs = 1
tx1.outputs = [txoutA]
tx1.locktime = 0
tx1hash = tx1.getHash()
print 'Creating transaction to send coins from A to B'
tx2 = PyCreateAndSignTx( [[ AddrA, tx1, 0 ]], [[AddrB, 50*(10**8)]])
print 'Verifying the transaction we just created',
psp = PyScriptProcessor()
psp.setTxObjects(tx1, tx2, 0)
verifResult = psp.verifyTransactionValid()
printpassorfail( verifResult)
# I made these two tx in a fake blockchain... but they should still work
tx1 = PyTx().unserialize(hex_to_binary( (
'01000000 0163451d 1002611c 1388d5ba 4ddfdf99 196a86b5 990fb5b0 dc786207'
'4fdcb8ee d2000000 004a4930 46022100 cb02fb5a 910e7554 85e3578e 6e9be315'
'a161540a 73f84ee6 f5d68641 925c59ac 0221007e 530a1826 30b50e2c 12dd09cd'
'ebfd809f 038be982 bdc2c7e9 d4cbf634 9e088d01 ffffffff 0200ca9a 3b000000'
'001976a9 14cb2abd e8bccacc 32e893df 3a054b9e f7f227a4 ce88ac00 286bee00'
'00000019 76a914ee 26c56fc1 d942be8d 7a24b2a1 001dd894 69398088 ac000000'
'00' ).replace(' ','')))
tx2 = PyTx().unserialize(hex_to_binary( (
'01000000 01a5b837 da38b64a 6297862c ba8210d0 21ac59e1 2b7c6d7e 70c355f6'
'972ee7a8 6e010000 008c4930 46022100 89e47100 d88d5f8c 8f62a796 dac3afb8'
'f090c6fc 2eb0c4af ac7b7567 3a364c01 0221002b f40e554d ae51264b 0a86df17'
'3e45756a 89bbd302 4f166cc4 2cfd1874 13636901 41046868 0737c76d abb801cb'
'2204f57d be4e4579 e4f710cd 67dc1b42 27592c81 e9b5cf02 b5ac9e8b 4c9f49be'
'5251056b 6a6d011e 4c37f6b6 d17ede6b 55faa235 19e2ffff ffff0100 286bee00'
'00000019 76a914c5 22664fb0 e55cdc5c 0cea73b4 aad97ec8 34323288 ac000000'
'00' ).replace(' ','')))
print '\nVerify tx from fake blockchain :',
psp = PyScriptProcessor()
psp.setTxObjects(tx1, tx2, 0)
verifResult = psp.verifyTransactionValid()
printpassorfail( verifResult)
################################################################################
################################################################################
if Test_MultiSigTx:
print '\n'
print '*********************************************************************'
print 'Testing Multi-signature transaction verification'
print '*********************************************************************'
print ''
# 2-of-2 transaction
tx1 = PyTx().unserialize(hex_to_binary('010000000189a0022c8291b4328338ec95179612b8ebf72067051de019a6084fb97eae0ebe000000004a4930460221009627882154854e3de066943ba96faba02bb8b80c1670a0a30d0408caa49f03df022100b625414510a2a66ebb43fffa3f4023744695380847ee1073117ec90cb60f2c8301ffffffff0210c18d0000000000434104a701496f10db6aa8acbb6a7aa14d62f4925f8da03de7f0262010025945f6ebcc3efd55b6aa4bc6f811a0dc1bbdd2644bdd81c8a63766aa11f650cd7736bbcaf8ac001bb7000000000043526b006b7dac7ca914fc1243972b59c1726735d3c5cca40e415039dce9879a6c936b7dac7ca914375dd72e03e7b5dbb49f7e843b7bef4a2cc2ce9e879a6c936b6c6ca200000000'))
tx2 = PyTx().unserialize(hex_to_binary('01000000011c9608650a912be7fa88eecec664e6fbfa4b676708697fa99c28b3370005f32d01000000fd1701483045022017462c29efc9158cf26f2070d444bb2b087b8a0e6287a9274fa36fad30c46485022100c6d4cc6cd504f768389637df71c1ccd452e0691348d0f418130c31da8cc2a6e8014104e83c1d4079a1b36417f0544063eadbc44833a992b9667ab29b4ff252d8287687bad7581581ae385854d4e5f1fcedce7de12b1aec1cb004cabb2ec1f3de9b2e60493046022100fdc7beb27de0c3a53fbf96df7ccf9518c5fe7873eeed413ce17e4c0e8bf9c06e022100cc15103b3c2e1f49d066897fe681a12e397e87ed7ee39f1c8c4a5fef30f4c2c60141047cf315904fcc2e3e2465153d39019e0d66a8aaec1cec1178feb10d46537427239fd64b81e41651e89b89fefe6a23561d25dddc835395dd3542f83b32a1906aebffffffff01c0d8a700000000001976a914fc1243972b59c1726735d3c5cca40e415039dce988ac00000000'))
print '\nVerify 2-of-2 tx from Testnet :',
psp = PyScriptProcessor()
psp.setTxObjects(tx1, tx2, 0)
verifResult = psp.verifyTransactionValid()
printpassorfail( verifResult)
# 2-of-3 transaction
tx1 = PyTx().unserialize(hex_to_binary('010000000371c06e0639dbe6bc35e6f948da4874ae69d9d91934ec7c5366292d0cbd5f97b0010000008a47304402200117cdd3ec6259af29acea44db354a6f57ac10d8496782033f5fe0febfd77f1b02202ceb02d60dbb43e6d4e03e5b5fbadc031f8bbb3c6c34ad307939947987f600bf01410452d63c092209529ca2c75e056e947bc95f9daffb371e601b46d24377aaa3d004ab3c6be2d6d262b34d736b95f3b0ef6876826c93c4077d619c02ebd974c7facdffffffffa65aa866aa7743ec05ba61418015fc32ecabd99886732056f1d4454c8f762bf8000000008c493046022100ea0a9b41c9372837e52898205c7bebf86b28936a3ee725672d0ca8f434f876f0022100beb7243a51fbc0997e55cb519d3b9cbd59f7aba68d80ba1e8adbb53443cda3c00141043efd1ca3cffc50638031281d227ff347a3a27bc145e2f846891d29f87bc068c27710559c4d9cd71f7e9e763d6e2753172406eb1ed1fadcaf9a8972b4270f05b4ffffffffd866d14151ee1b733a2a7273f155ecb25c18303c31b2c4de5aa6080aef2e0006000000008b483045022052210f95f6b413c74ce12cfc1b14a36cb267f9fa3919fa6e20dade1cd570439f022100b9e5b325f312904804f043d06c6ebc8e4b1c6cd272856c48ab1736b9d562e10c01410423fdddfe7e4d70d762dd6596771e035f4b43d54d28c2231be1102056f81f067914fe4fb6fd6e3381228ee5587ddd2028c846025741e963d9b1d6cf2c2dea0dbcffffffff0210ef3200000000004341048a33e9fd2de28137574cc69fe5620199abe37b7d08a51c528876fe6c5fa7fc28535f5a667244445e79fffc9df85ec3d79d77693b1f37af0e2d7c1fa2e7113a48acc0d454070000000061526b006b7dac7ca9143cd1def404e12a85ead2b4d3f5f9f817fb0d46ef879a6c936b7dac7ca9146a4e7d5f798e90e84db9244d4805459f87275943879a6c936b7dac7ca914486efdd300987a054510b4ce1148d4ad290d911e879a6c936b6c6ca200000000'))
tx2 = PyTx().unserialize(hex_to_binary('01000000012f654d4d1d7246d1a824c5b6c5177c0b5a1983864579aabb88cabd5d05e032e201000000fda0014730440220151ad44e7f78f9e0c4a3f2135c19ca3de8dbbb7c58893db096c0c5f1573d5dec02200724a78c3fa5f153103cb46816df46eb6cfac3718038607ddec344310066161e01410459fd82189b81772258a3fc723fdda900eb8193057d4a573ee5ad39e26b58b5c12c4a51b0edd01769f96ed1998221daf0df89634a7137a8fa312d5ccc95ed8925483045022100ca34834ece5925cff6c3d63e2bda6b0ce0685b18f481c32e70de9a971e85f12f0220572d0b5de0cf7b8d4e28f4914a955e301faaaa42f05feaa1cc63b45f938d75d9014104ce6242d72ee67e867e6f8ec434b95fcb1889c5b485ec3414df407e11194a7ce012eda021b68f1dd124598a9b677d6e7d7c95b1b7347f5c5a08efa628ef0204e1483045022074e01e8225e8c4f9d0b3f86908d42a61e611f406e13817d16240f94f52f49359022100f4c768dd89c6435afd3834ae2c882465ade92d7e1cc5c2c2c3d8d25c41b3ea61014104ce66c9f5068b715b62cc1622572cd98a08812d8ca01563045263c3e7af6b997e603e8e62041c4eb82dfd386a3412c34c334c34eb3c76fb0e37483fc72323f807ffffffff01b0ad5407000000001976a9146a4e7d5f798e90e84db9244d4805459f8727594388ac00000000'))
print '\nVerify 2-of-3 tx from Testnet :',
psp = PyScriptProcessor()
psp.setTxObjects(tx1, tx2, 0)
verifResult = psp.verifyTransactionValid()
printpassorfail( verifResult)
# Check Multisig
tx1 = PyTx().unserialize(hex_to_binary('0100000001845ad165bdc0f9b5829cf5a594c4148dfd89e24756303f3a8dabeb597afa589b010000008b483045022063c233df8efa3d1885e069e375a8eabf16b23475ef21bdc9628a513ee4caceb702210090a102c7b602043e72b34a154d495ac19b3b9e42acb962c399451f2baead8f4c014104b38f79037ad25b84a564eaf53ede93dec70b35216e6682aa71a47cefa2996ec49acfbb0a8730577c62ef9a7cc20c740aaaaee75419bef9640a4216c2b49c42d3ffffffff02000c022900000000434104c08c0a71ccbe838403e3870aa1ab871b0ab3a6014b0ba41f6df2b9aefea73134ecaa0b27797620e402a33799e9047f86519d9e43bbd504cf753c293752933f4fac406f40010000000062537a7652a269537a829178a91480677c5392220db736455533477d0bc2fba65502879b69537a829178a91402d7aa2e76d9066fb2b3c41ff8839a5c81bdca19879b69537a829178a91410039ce4fdb5d4ee56148fe3935b9bfbbe4ecc89879b6953ae00000000'))
tx2 = PyTx().unserialize(hex_to_binary('0100000001bb664ff716b9dfc831bcc666c1767f362ad467fcfbaf4961de92e45547daab8701000000fd190100493046022100d73f633f114e0e0b324d87d38d34f22966a03b072803afa99c9408201f6d6dc6022100900e85be52ad2278d24e7edbb7269367f5f2d6f1bd338d017ca460008776614401473044022071fef8ac0aa6318817dbd242bf51fb5b75be312aa31ecb44a0afe7b49fcf840302204c223179a383bb6fcb80312ac66e473345065f7d9136f9662d867acf96c12a42015241048c006ff0d2cfde86455086af5a25b88c2b81858aab67f6a3132c885a2cb9ec38e700576fd46c7d72d7d22555eee3a14e2876c643cd70b1b0a77fbf46e62331ac4104b68ef7d8f24d45e1771101e269c0aacf8d3ed7ebe12b65521712bba768ef53e1e84fff3afbee360acea0d1f461c013557f71d426ac17a293c5eebf06e468253e00ffffffff0280969800000000001976a9140817482d2e97e4be877efe59f4bae108564549f188ac7015a7000000000062537a7652a269537a829178a91480677c5392220db736455533477d0bc2fba65502879b69537a829178a91402d7aa2e76d9066fb2b3c41ff8839a5c81bdca19879b69537a829178a91410039ce4fdb5d4ee56148fe3935b9bfbbe4ecc89879b6953ae00000000'))
print '\nOP_CHECKMULTISIG from Testnet :',
psp = PyScriptProcessor()
psp.setTxObjects(tx1, tx2, 0)
verifResult = psp.verifyTransactionValid()
printpassorfail( verifResult)
print '\nTest multisig addr extraction :',
scripts = []
scripts.append(hex_to_binary('4104b54b5fc1917945fff64785d4baaca66a9704e9ed26002f51f53763499643321fbc047683a62be16e114e25404ce6ffdcf625a928002403402bf9f01e5cbd5f3dad4104f576e534f9bbf6d7c5f186ff4c6e0c5442c2755314bdee62fbc656f94d6cbf32c5eb3522da21cf9f954133000ffccb20dbfec030737640cc3315ce09619210d0ac'))
scripts.append(hex_to_binary('537a7652a269537a829178a91480677c5392220db736455533477d0bc2fba65502879b69537a829178a91402d7aa2e76d9066fb2b3c41ff8839a5c81bdca19879b69537a829178a91410039ce4fdb5d4ee56148fe3935b9bfbbe4ecc89879b6953ae'))
scripts.append(hex_to_binary('527a7651a269527a829178a914731cdb75c88a01cbb96729888f726b3b9f29277a879b69527a829178a914e9b4261c6122f8957683636548923acc069e8141879b6952ae'))
for scr in scripts:
mstype, addrList, pubList = getTxOutMultiSigInfo(scr)
print '\nNum addresses: ', len(addrList), '\n ',
for a in addrList:
print PyBtcAddress().createFromPublicKeyHash160(a).getAddrStr(),
# TODO: Add some tests for the OP_CHECKMULTISIG support in TxDP
################################################################################
################################################################################
if Test_NetworkObjects:
print '\n'
print '*********************************************************************'
print 'Testing secure address/wallet features'
print '*********************************************************************'
print ''
netAddrHex = ('f9beb4d9 61646472 00000000 00000000'
'1f000000 689dcea8 01d6c7db 4e010000'
'00000000 00000000 00000000 000000ff'
'ff0233b6 ec208d' ).replace(' ','')
invHex = ('f9beb4d9 696e7600 00000000 00000000'
'25000000 fef89552 01010000 0021eca1'
'50d3f7cd 5eca5ada 7ad02f8f 3bf38420'
'0cb53e8d d51b153d e92bac7a 1b' ).replace(' ','')
################################################################################
################################################################################
if Test_EncryptedAddress:
print '\n'
print '*********************************************************************'
print 'Testing secure address/wallet features'
print '*********************************************************************'
print ''
# Enable this flag to get a TON of debugging output!
debugPrint = False
# Create an address to use for all subsequent tests
privKey = SecureBinaryData(hex_to_binary('aa'*32))
privChk = privKey.getHash256()[:4]
pubKey = CryptoECDSA().ComputePublicKey(privKey)
addr20 = pubKey.getHash160()
# We pretend that we plugged some passphrases through a KDF
fakeKdfOutput1 = SecureBinaryData( hex_to_binary('11'*32) )
fakeKdfOutput2 = SecureBinaryData( hex_to_binary('22'*32) )
# Test serializing an empty address object: we'll be using this
# in other methods to determine the length of an address, which
# will be the same for all PyBtcAddress objects, empty or not
print '\nTest serializing empty address'
serializedAddr = PyBtcAddress().serialize()
print 'PyBtcAddress serializations are', len(serializedAddr), 'bytes'
printpassorfail(True) # if we didn't crash, we win!
#############################################################################
# Try to create addresses without crashing
print '\n\nTesting PyBtcAddress with plaintext private key (try not to crash)'
testAddr = PyBtcAddress().createFromPlainKeyData(privKey, addr20)
testAddr = PyBtcAddress().createFromPlainKeyData(privKey, addr20, chksum=privChk)
testAddr = PyBtcAddress().createFromPlainKeyData(privKey, addr20, publicKey65=pubKey)
testAddr = PyBtcAddress().createFromPlainKeyData(privKey, addr20, publicKey65=pubKey, skipCheck=True)
testAddr = PyBtcAddress().createFromPlainKeyData(privKey, addr20, skipPubCompute=True)
if debugPrint: testAddr.pprint(indent=' '*3)
testAddr = PyBtcAddress().createFromPlainKeyData(privKey, addr20, publicKey65=pubKey)
print '\nTest serializing unencrypted wallet',
serializedAddr = testAddr.serialize()
retestAddr = PyBtcAddress().unserialize(serializedAddr)
serializedRetest = retestAddr.serialize()
printpassorfail(serializedAddr == serializedRetest)
theIV = SecureBinaryData(hex_to_binary('77'*16))
# Now try locking and unlock addresses
print '\nTesting address locking'
testAddr.enableKeyEncryption(theIV)
testAddr.lock(fakeKdfOutput1)
if debugPrint: testAddr.pprint(indent=' '*3)
print '\nTest serializing locked address',
serializedAddr = testAddr.serialize()
retestAddr = PyBtcAddress().unserialize(serializedAddr)
serializedRetest = retestAddr.serialize()
printpassorfail(serializedAddr == serializedRetest)
print '\nTesting address unlocking'
testAddr.unlock(fakeKdfOutput1)
if debugPrint: testAddr.pprint(indent=' '*3)
print '\nTest serializing encrypted-but-unlocked address',
serializedAddr = testAddr.serialize()
retestAddr = PyBtcAddress().unserialize(serializedAddr)
serializedRetest = retestAddr.serialize()
printpassorfail(serializedAddr == serializedRetest)
#############################################################################
print '\n\nTest changing passphrases'
print ' OP(None --> Key1)'
testAddr = PyBtcAddress().createFromPlainKeyData(privKey, addr20, publicKey65=pubKey)
testAddr.enableKeyEncryption(theIV)
testAddr.changeEncryptionKey(None, fakeKdfOutput1)
if debugPrint: testAddr.pprint(indent=' '*3)
# Save off this data for a later test
addr20_1 = testAddr.getAddr160()
encryptedKey1 = testAddr.binPrivKey32_Encr
encryptionIV1 = testAddr.binInitVect16
plainPubKey1 = testAddr.binPublicKey65
print '\n OP(Key1 --> Unencrypted)'
testAddr.changeEncryptionKey(fakeKdfOutput1, None)
if debugPrint: testAddr.pprint(indent=' '*3)
print '\n OP(Unencrypted --> Key2)'
if not testAddr.isKeyEncryptionEnabled():
testAddr.enableKeyEncryption(theIV)
testAddr.changeEncryptionKey(None, fakeKdfOutput2)
if debugPrint: testAddr.pprint(indent=' '*3)
# Save off this data for a later test
addr20_2 = testAddr.getAddr160()
encryptedKey2 = testAddr.binPrivKey32_Encr
encryptionIV2 = testAddr.binInitVect16
plainPubKey2 = testAddr.binPublicKey65
print '\n OP(Key2 --> Key1)'
testAddr.changeEncryptionKey(fakeKdfOutput2, fakeKdfOutput1)
if debugPrint: testAddr.pprint(indent=' '*3)
print '\n OP(Key1 --> Lock --> Key2)'
testAddr.lock(fakeKdfOutput1)
testAddr.changeEncryptionKey(fakeKdfOutput1, fakeKdfOutput2)
if debugPrint: testAddr.pprint(indent=' '*3)
print '\n OP(Key2 --> Lock --> Unencrypted)'
testAddr.changeEncryptionKey(fakeKdfOutput2, None)
if debugPrint: testAddr.pprint(indent=' '*3)
print '\nEncryption Key Tests: '
printpassorfail(testAddr.serializePlainPrivateKey() == privKey.toBinStr())
#############################################################################
# TODO: Gotta test pre-encrypted key handling
print '\n\nTest loading pre-encrypted key data'
testAddr = PyBtcAddress().createFromEncryptedKeyData(addr20_1, \
encryptedKey1, \
encryptionIV1)
if debugPrint: testAddr.pprint(indent=' '*3)
print '\n OP(EncrAddr --> Unlock1)'
testAddr.unlock(fakeKdfOutput1)
if debugPrint: testAddr.pprint(indent=' '*3)
print '\n OP(Unlock1 --> Lock1)'
testAddr.lock()
if debugPrint: testAddr.pprint(indent=' '*3)
print '\n OP(Lock1 --> Lock2)'
testAddr.changeEncryptionKey(fakeKdfOutput1, fakeKdfOutput2)
if debugPrint: testAddr.pprint(indent=' '*3)
print '\nTest serializing locked wallet from pre-encrypted data',
serializedAddr = testAddr.serialize()
retestAddr = PyBtcAddress().unserialize(serializedAddr)
serializedRetest = retestAddr.serialize()
printpassorfail(serializedAddr == serializedRetest)
#############################################################################
# Now testing chained-key (deterministic) address generation
print '\n\nTest chained priv key generation'
print 'Starting with plain key data'
chaincode = SecureBinaryData(hex_to_binary('ee'*32))
addr0 = PyBtcAddress().createFromPlainKeyData(privKey, addr20)
addr0.markAsRootAddr(chaincode)
pub0 = addr0.binPublicKey65
if debugPrint: addr0.pprint(indent=' '*3)
print '\nTest serializing address-chain-root',
serializedAddr = addr0.serialize()
retestAddr = PyBtcAddress().unserialize(serializedAddr)
serializedRetest = retestAddr.serialize()
printpassorfail(serializedAddr == serializedRetest)
print '\nGenerate chained PRIVATE key address'
print ' OP(addr[0] --> addr[1])'
addr1 = addr0.extendAddressChain()
if debugPrint: addr1.pprint(indent=' '*3)
print '\n OP(addr[0] --> addr[1]) [again]'
addr1a = addr0.extendAddressChain()
if debugPrint: addr1a.pprint(indent=' '*3)
print '\n OP(addr[1] --> addr[2])'
addr2 = addr1.extendAddressChain()
pub2 = addr2.binPublicKey65.copy()
priv2 = addr2.binPrivKey32_Plain.copy()
if debugPrint: addr2.pprint(indent=' '*3)
print '\nAddr1.privKey == Addr1a.privKey:',
printpassorfail(addr1.binPublicKey65 == addr1a.binPublicKey65)
print '\nTest serializing priv-key-chained',
serializedAddr = addr2.serialize()
retestAddr = PyBtcAddress().unserialize(serializedAddr)
serializedRetest = retestAddr.serialize()
printpassorfail(serializedAddr == serializedRetest)
#############################################################################
print '\n\nGenerate chained PUBLIC key address'
print ' addr[0]'
addr0 = PyBtcAddress().createFromPublicKeyData(pub0)
addr0.markAsRootAddr(chaincode)
if debugPrint: addr0.pprint(indent=' '*3)
print '\nTest serializing pub-key-only-root',
serializedAddr = addr0.serialize()
retestAddr = PyBtcAddress().unserialize(serializedAddr)
serializedRetest = retestAddr.serialize()
printpassorfail(serializedAddr == serializedRetest)
print '\n OP(addr[0] --> addr[1])'
addr1 = addr0.extendAddressChain()
if debugPrint: addr1.pprint(indent=' '*3)
print '\n OP(addr[1] --> addr[2])'
addr2 = addr1.extendAddressChain()
pub2a = addr2.binPublicKey65.copy()
if debugPrint: addr2.pprint(indent=' '*3)
print '\nAddr2.PublicKey == Addr2a.PublicKey:',
printpassorfail(pub2 == pub2a)
print '\nTest serializing pub-key-from-chain',
serializedAddr = addr2.serialize()
retestAddr = PyBtcAddress().unserialize(serializedAddr)
serializedRetest = retestAddr.serialize()
printpassorfail(serializedAddr == serializedRetest)
#############################################################################
print '\n\nGenerate chained keys from locked addresses'
addr0 = PyBtcAddress().createFromPlainKeyData( privKey, \
willBeEncr=True, IV16=theIV)
addr0.markAsRootAddr(chaincode)
print '\n OP(addr[0] plain)'
if debugPrint: addr0.pprint(indent=' '*3)
print '\nTest serializing unlocked addr-chain-root',
serializedAddr = addr0.serialize()
retestAddr = PyBtcAddress().unserialize(serializedAddr)
serializedRetest = retestAddr.serialize()
printpassorfail(serializedAddr == serializedRetest)
print '\n OP(addr[0] locked)'
addr0.lock(fakeKdfOutput1)
if debugPrint: addr0.pprint(indent=' '*3)
print '\n OP(addr[0] w/Key --> addr[1])'
addr1 = addr0.extendAddressChain(fakeKdfOutput1, newIV=theIV)
if debugPrint: addr1.pprint(indent=' '*3)
print '\n OP(addr[1] w/Key --> addr[2])'
addr2 = addr1.extendAddressChain(fakeKdfOutput1, newIV=theIV)
addr2.unlock(fakeKdfOutput1)
priv2a = addr2.binPrivKey32_Plain.copy()
addr2.lock()
if debugPrint: addr2.pprint(indent=' '*3)
print '\nAddr2.priv == Addr2a.priv:',
printpassorfail(priv2 == priv2a)
print '\nTest serializing chained address from locked root',
serializedAddr = addr2.serialize()
retestAddr = PyBtcAddress().unserialize(serializedAddr)
serializedRetest = retestAddr.serialize()
printpassorfail(serializedAddr == serializedRetest)
#############################################################################
print '\n\nGenerate chained keys from locked addresses, no unlocking'
addr0 = PyBtcAddress().createFromPlainKeyData( privKey, \
willBeEncr=True, IV16=theIV)
addr0.markAsRootAddr(chaincode)
print '\n OP(addr[0] locked)'
addr0.lock(fakeKdfOutput1)
if debugPrint: addr0.pprint(indent=' '*3)
print '\n OP(addr[0] locked --> addr[1] locked)'
addr1 = addr0.extendAddressChain(newIV=theIV)
if debugPrint: addr1.pprint(indent=' '*3)
print '\n OP(addr[1] locked --> addr[2] locked)'
addr2 = addr1.extendAddressChain(newIV=theIV)
pub2b = addr2.binPublicKey65.copy()
if debugPrint: addr2.pprint(indent=' '*3)
print '\nAddr2.Pub == Addr2b.pub:',
printpassorfail(pub2 == pub2b)
print '\nTest serializing priv-key-bearing address marked for unlock',
serializedAddr = addr2.serialize()
retestAddr = PyBtcAddress().unserialize(serializedAddr)
serializedRetest = retestAddr.serialize()
printpassorfail(serializedAddr == serializedRetest)
addr2.unlock(fakeKdfOutput1)
priv2b = addr2.binPrivKey32_Plain.copy()
print '\n OP(addr[2] locked --> unlocked)'
if debugPrint: addr2.pprint(indent=' '*3)
addr2.lock()
print '\n OP(addr[2] unlocked --> locked)'
if debugPrint: addr2.pprint(indent=' '*3)
print '\nAddr2.priv == Addr2b.priv:',
printpassorfail(priv2 == priv2b)
################################################################################
################################################################################