-
Notifications
You must be signed in to change notification settings - Fork 0
/
demo_video.py
164 lines (143 loc) · 6.61 KB
/
demo_video.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import os
import torch
import argparse
import numpy as np
from PIL import Image
from tqdm import tqdm
import cv2
import time
import onnx
import onnxruntime
import onnxsim
from onnx import version_converter
from torch.utils.data import DataLoader
import torchvision.transforms as transforms
import networks
from utils.transforms import transform_logits
from utils import change_dict
from utils import gray2color
from datasets.simple_extractor_video import SimpleVideo
dataset_settings = {
'lip': {
'input_size': [473, 473],
'num_classes': 20,
'label': ['Background', 'Hat', 'Hair', 'Glove', 'Sunglasses', 'Upper-clothes', 'Dress', 'Coat',
'Socks', 'Pants', 'Jumpsuits', 'Scarf', 'Skirt', 'Face', 'Left-arm', 'Right-arm',
'Left-leg', 'Right-leg', 'Left-shoe', 'Right-shoe']
},
'atr': {
'input_size': [512, 512],
'num_classes': 18,
'label': ['Background', 'Hat', 'Hair', 'Sunglasses', 'Upper-clothes', 'Skirt', 'Pants', 'Dress', 'Belt',
'Left-shoe', 'Right-shoe', 'Face', 'Left-leg', 'Right-leg', 'Left-arm', 'Right-arm', 'Bag', 'Scarf']
},
'pascal': {
'input_size': [512, 512],
'num_classes': 7,
'label': ['Background', 'Head', 'Torso', 'Upper Arms', 'Lower Arms', 'Upper Legs', 'Lower Legs'],
},
'cihp': {
'input_size' : [473, 473],
'num_classes': 20,
'label': ['Background', 'Hat', 'Hair', 'Sunglasses', 'Upper clothes', 'Dress', 'Coat', 'Socks', 'Pants','Scarf', 'Torsoskin',
'Skirt', 'Gloves', 'Face', 'Right arm', 'Left arm', 'Right leg', 'Left leg',' Right shoe', 'Left shoe']
}
}
def get_arguments():
"""Parse all the arguments provided from the CLI.
Returns:
A list of parsed arguments.
"""
parser = argparse.ArgumentParser(description="Self Correction for Human Parsing")
parser.add_argument("--dataset", type=str, default='cihp', choices=['lip', 'atr', 'pascal', 'cihp'])
parser.add_argument("--model-restore", type=str, default='./checkpoints/exp_schp_multi_cihp_global.pth', help="restore pretrained model parameters.")
parser.add_argument("--gpu", type=str, default='None', help="choose gpu device.")
parser.add_argument("--input-dir", type=str, default='./test/input', help="path of input image folder.")
parser.add_argument("--output-dir", type=str, default='./test/output_global', help="path of output image folder.")
parser.add_argument("--logits", action='store_true', default=False, help="whether to save the logits.")
return parser.parse_args()
def main():
args = get_arguments()
# gpus = [int(i) for i in args.gpu.split(',')]
# assert len(gpus) == 1
if not args.gpu == 'None':
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu
num_classes = dataset_settings[args.dataset]['num_classes']
input_size = dataset_settings[args.dataset]['input_size']
label = dataset_settings[args.dataset]['label']
print("Evaluating total class number {} with {}".format(num_classes, label))
model = networks.init_model('resnet101', num_classes=num_classes, pretrained=None)
state_dict = torch.load(args.model_restore) #['state_dict']
from collections import OrderedDict
new_state_dict = OrderedDict()
secretary = change_dict.dictModify(new_dict=new_state_dict, old_dict=state_dict)
new_state_dict = secretary.arange()
# for k, v in state_dict.items():
# name = k[7:] # remove `module.`
# new_state_dict[name] = v
model.load_state_dict(new_state_dict)
# print(model)
# # model.cuda()
# model = torch.load("log/entire_model.pth", map_location=torch.device('cpu'))
model.eval()
input = torch.randn(1, 3, 473, 473)
ONNX_FILE_PATH = "pretrain_model/local.onnx"
ONNX_SIM_FILE_PATH = "pretrain_model/sim_local.onnx"
# torch.onnx.export(model, input, ONNX_FILE_PATH, input_names=['input'], output_names=['output'], opset_version=11) #, operator_export_type=torch.onnx.OperatorExportTypes.ONNX_ATEN_FALLBACK)
# onnx_model = onnx.load(ONNX_FILE_PATH)
# sim_model, check = onnxsim.simplify(onnx_model)
# onnx.save(sim_model, ONNX_SIM_FILE_PATH)
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.406, 0.456, 0.485], std=[0.225, 0.224, 0.229])
])
transformer = SimpleVideo(transforms=transform, input_size=[473,473])
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
color_man = gray2color.makeColor(num_classes)
VIDEO_PATH = "input.mp4"
cap = cv2.VideoCapture(VIDEO_PATH)
frame_width = int(cap.get(3))
frame_height = int(cap.get(4))
out = cv2.VideoWriter('outpy.avi',cv2.VideoWriter_fourcc('M','J','P','G'), 24, (frame_width,frame_height))
with torch.no_grad():
start = time.time()
count = 0
ret = True
while (cap.isOpened()):
ret, frame = cap.read()
if ret == True:
frame, meta = transformer.get_item(frame)
c = meta['center']
s = meta['scale']
w = meta['width']
h = meta['height']
# out_put = model(frame)
output = model(frame)
# output = model(image.cuda())
upsample = torch.nn.Upsample(size=input_size, mode='bilinear', align_corners=True)
upsample_output = upsample(output[0][-1][0].unsqueeze(0))
upsample_output = upsample_output.squeeze()
upsample_output = upsample_output.permute(1, 2, 0) # CHW -> HWC
logits_result = transform_logits(upsample_output.data.cpu().numpy(), c, s, w, h, input_size=input_size)
parsing_result = np.argmax(logits_result, axis=2)
output_img = Image.fromarray(np.asarray(parsing_result, dtype=np.uint8))
out_img = np.array(output_img)
output_img = color_man.G2C(out_img)
out.write(np.array(output_img))
cv2.imshow("Tanned", np.array(output_img))
if cv2.waitKey(1) & 0xFF == ord('q'):
break
if args.logits:
logits_result_path = os.path.join(args.output_dir, img_name[:-4] + '.npy')
np.save(logits_result_path, logits_result)
count += 1
else:
break
end = time.time()
cap.release()
out.release()
print("Processed {} images using {:.5} seconds, average each image took {:.5} seconds".format(count, end-start, (end-start)/(count+0.1)))
return
if __name__ == '__main__':
main()