-
Notifications
You must be signed in to change notification settings - Fork 244
/
stacked_lstm.py
60 lines (46 loc) · 2.18 KB
/
stacked_lstm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import numpy as np
import os
import sys
import tensorflow as tf
from tensorflow.contrib import rnn
from model import Model
from utils.language_utils import line_to_indices, get_word_emb_arr, val_to_vec
VOCAB_DIR = 'sent140/embs.json'
class ClientModel(Model):
def __init__(self, seed, lr, seq_len, num_classes, n_hidden, emb_arr=None):
self.seq_len = seq_len
self.num_classes = num_classes
self.n_hidden = n_hidden
_, self.indd, vocab = get_word_emb_arr(VOCAB_DIR)
self.vocab_size = len(vocab)
if emb_arr:
self.emb_arr = emb_arr
super(ClientModel, self).__init__(seed, lr)
def create_model(self):
features = tf.placeholder(tf.int32, [None, self.seq_len])
embedding = tf.get_variable(
'embedding', [self.vocab_size + 1, self.n_hidden], dtype=tf.float32)
x = tf.cast(tf.nn.embedding_lookup(embedding, features), tf.float32)
labels = tf.placeholder(tf.float32, [None, self.num_classes])
stacked_lstm = rnn.MultiRNNCell(
[rnn.BasicLSTMCell(self.n_hidden) for _ in range(2)])
outputs, _ = tf.nn.dynamic_rnn(stacked_lstm, x, dtype=tf.float32)
fc1 = tf.layers.dense(inputs=outputs[:, -1, :], units=128)
pred = tf.layers.dense(inputs=fc1, units=self.num_classes)
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(logits=pred, labels=labels))
train_op = self.optimizer.minimize(
loss=loss,
global_step=tf.train.get_global_step())
correct_pred = tf.equal(tf.argmax(pred, 1), tf.argmax(labels, 1))
eval_metric_ops = tf.count_nonzero(correct_pred)
return features, labels, train_op, eval_metric_ops, loss
def process_x(self, raw_x_batch, max_words=25):
x_batch = [e[4] for e in raw_x_batch]
x_batch = [line_to_indices(e, self.indd, max_words) for e in x_batch]
x_batch = np.array(x_batch)
return x_batch
def process_y(self, raw_y_batch):
y_batch = [int(e) for e in raw_y_batch]
y_batch = [val_to_vec(self.num_classes, e) for e in y_batch]
y_batch = np.array(y_batch)
return y_batch