forked from andyzeng/visual-pushing-grasping
-
Notifications
You must be signed in to change notification settings - Fork 0
/
calibrate.py
executable file
·187 lines (155 loc) · 8.39 KB
/
calibrate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
#!/usr/bin/env python
import matplotlib.pyplot as plt
import numpy as np
import time
import cv2
from real.camera import Camera
from robot import Robot
from scipy import optimize
from mpl_toolkits.mplot3d import Axes3D
# User options (change me)
# --------------- Setup options ---------------
tcp_host_ip = '100.127.7.223' # IP and port to robot arm as TCP client (UR5)
tcp_port = 30002
rtc_host_ip = '100.127.7.223' # IP and port to robot arm as real-time client (UR5)
rtc_port = 30003
workspace_limits = np.asarray([[0.3, 0.748], [0.05, 0.4], [-0.2, -0.1]]) # Cols: min max, Rows: x y z (define workspace limits in robot coordinates)
calib_grid_step = 0.05
checkerboard_offset_from_tool = [0,-0.13,0.02]
tool_orientation = [-np.pi/2,0,0] # [0,-2.22,2.22] # [2.22,2.22,0]
# ---------------------------------------------
# Construct 3D calibration grid across workspace
gridspace_x = np.linspace(workspace_limits[0][0], workspace_limits[0][1], 1 + (workspace_limits[0][1] - workspace_limits[0][0])/calib_grid_step)
gridspace_y = np.linspace(workspace_limits[1][0], workspace_limits[1][1], 1 + (workspace_limits[1][1] - workspace_limits[1][0])/calib_grid_step)
gridspace_z = np.linspace(workspace_limits[2][0], workspace_limits[2][1], 1 + (workspace_limits[2][1] - workspace_limits[2][0])/calib_grid_step)
calib_grid_x, calib_grid_y, calib_grid_z = np.meshgrid(gridspace_x, gridspace_y, gridspace_z)
num_calib_grid_pts = calib_grid_x.shape[0]*calib_grid_x.shape[1]*calib_grid_x.shape[2]
calib_grid_x.shape = (num_calib_grid_pts,1)
calib_grid_y.shape = (num_calib_grid_pts,1)
calib_grid_z.shape = (num_calib_grid_pts,1)
calib_grid_pts = np.concatenate((calib_grid_x, calib_grid_y, calib_grid_z), axis=1)
measured_pts = []
observed_pts = []
observed_pix = []
# Move robot to home pose
print('Connecting to robot...')
robot = Robot(False, None, None, workspace_limits,
tcp_host_ip, tcp_port, rtc_host_ip, rtc_port,
False, None, None)
robot.open_gripper()
# Slow down robot
robot.joint_acc = 1.4
robot.joint_vel = 1.05
# Make robot gripper point upwards
robot.move_joints([-np.pi, -np.pi/2, np.pi/2, 0, np.pi/2, np.pi])
# Move robot to each calibration point in workspace
print('Collecting data...')
for calib_pt_idx in range(num_calib_grid_pts):
tool_position = calib_grid_pts[calib_pt_idx,:]
robot.move_to(tool_position, tool_orientation)
time.sleep(1)
# Find checkerboard center
checkerboard_size = (3,3)
refine_criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)
camera_color_img, camera_depth_img = robot.get_camera_data()
bgr_color_data = cv2.cvtColor(camera_color_img, cv2.COLOR_RGB2BGR)
gray_data = cv2.cvtColor(bgr_color_data, cv2.COLOR_RGB2GRAY)
checkerboard_found, corners = cv2.findChessboardCorners(gray_data, checkerboard_size, None, cv2.CALIB_CB_ADAPTIVE_THRESH)
if checkerboard_found:
corners_refined = cv2.cornerSubPix(gray_data, corners, (3,3), (-1,-1), refine_criteria)
# Get observed checkerboard center 3D point in camera space
checkerboard_pix = np.round(corners_refined[4,0,:]).astype(int)
checkerboard_z = camera_depth_img[checkerboard_pix[1]][checkerboard_pix[0]]
checkerboard_x = np.multiply(checkerboard_pix[0]-robot.cam_intrinsics[0][2],checkerboard_z/robot.cam_intrinsics[0][0])
checkerboard_y = np.multiply(checkerboard_pix[1]-robot.cam_intrinsics[1][2],checkerboard_z/robot.cam_intrinsics[1][1])
if checkerboard_z == 0:
continue
# Save calibration point and observed checkerboard center
observed_pts.append([checkerboard_x,checkerboard_y,checkerboard_z])
# tool_position[2] += checkerboard_offset_from_tool
tool_position = tool_position + checkerboard_offset_from_tool
measured_pts.append(tool_position)
observed_pix.append(checkerboard_pix)
# Draw and display the corners
# vis = cv2.drawChessboardCorners(robot.camera.color_data, checkerboard_size, corners_refined, checkerboard_found)
vis = cv2.drawChessboardCorners(bgr_color_data, (1,1), corners_refined[4,:,:], checkerboard_found)
cv2.imwrite('%06d.png' % len(measured_pts), vis)
cv2.imshow('Calibration',vis)
cv2.waitKey(10)
# Move robot back to home pose
robot.go_home()
measured_pts = np.asarray(measured_pts)
observed_pts = np.asarray(observed_pts)
observed_pix = np.asarray(observed_pix)
world2camera = np.eye(4)
# Estimate rigid transform with SVD (from Nghia Ho)
def get_rigid_transform(A, B):
assert len(A) == len(B)
N = A.shape[0]; # Total points
centroid_A = np.mean(A, axis=0)
centroid_B = np.mean(B, axis=0)
AA = A - np.tile(centroid_A, (N, 1)) # Centre the points
BB = B - np.tile(centroid_B, (N, 1))
H = np.dot(np.transpose(AA), BB) # Dot is matrix multiplication for array
U, S, Vt = np.linalg.svd(H)
R = np.dot(Vt.T, U.T)
if np.linalg.det(R) < 0: # Special reflection case
Vt[2,:] *= -1
R = np.dot(Vt.T, U.T)
t = np.dot(-R, centroid_A.T) + centroid_B.T
return R, t
def get_rigid_transform_error(z_scale):
global measured_pts, observed_pts, observed_pix, world2camera, camera
# Apply z offset and compute new observed points using camera intrinsics
observed_z = observed_pts[:,2:] * z_scale
observed_x = np.multiply(observed_pix[:,[0]]-robot.cam_intrinsics[0][2],observed_z/robot.cam_intrinsics[0][0])
observed_y = np.multiply(observed_pix[:,[1]]-robot.cam_intrinsics[1][2],observed_z/robot.cam_intrinsics[1][1])
new_observed_pts = np.concatenate((observed_x, observed_y, observed_z), axis=1)
# Estimate rigid transform between measured points and new observed points
R, t = get_rigid_transform(np.asarray(measured_pts), np.asarray(new_observed_pts))
t.shape = (3,1)
world2camera = np.concatenate((np.concatenate((R, t), axis=1),np.array([[0, 0, 0, 1]])), axis=0)
# Compute rigid transform error
registered_pts = np.dot(R,np.transpose(measured_pts)) + np.tile(t,(1,measured_pts.shape[0]))
error = np.transpose(registered_pts) - new_observed_pts
error = np.sum(np.multiply(error,error))
rmse = np.sqrt(error/measured_pts.shape[0]);
return rmse
# Optimize z scale w.r.t. rigid transform error
print('Calibrating...')
z_scale_init = 1
optim_result = optimize.minimize(get_rigid_transform_error, np.asarray(z_scale_init), method='Nelder-Mead')
camera_depth_offset = optim_result.x
# Save camera optimized offset and camera pose
print('Saving...')
np.savetxt('real/camera_depth_scale.txt', camera_depth_offset, delimiter=' ')
get_rigid_transform_error(camera_depth_offset)
camera_pose = np.linalg.inv(world2camera)
np.savetxt('real/camera_pose.txt', camera_pose, delimiter=' ')
print('Done.')
# DEBUG CODE -----------------------------------------------------------------------------------
# np.savetxt('measured_pts.txt', np.asarray(measured_pts), delimiter=' ')
# np.savetxt('observed_pts.txt', np.asarray(observed_pts), delimiter=' ')
# np.savetxt('observed_pix.txt', np.asarray(observed_pix), delimiter=' ')
# measured_pts = np.loadtxt('measured_pts.txt', delimiter=' ')
# observed_pts = np.loadtxt('observed_pts.txt', delimiter=' ')
# observed_pix = np.loadtxt('observed_pix.txt', delimiter=' ')
# fig = plt.figure()
# ax = fig.add_subplot(111, projection='3d')
# ax.scatter(measured_pts[:,0],measured_pts[:,1],measured_pts[:,2], c='blue')
# print(camera_depth_offset)
# R, t = get_rigid_transform(np.asarray(measured_pts), np.asarray(observed_pts))
# t.shape = (3,1)
# camera_pose = np.concatenate((np.concatenate((R, t), axis=1),np.array([[0, 0, 0, 1]])), axis=0)
# camera2robot = np.linalg.inv(camera_pose)
# t_observed_pts = np.transpose(np.dot(camera2robot[0:3,0:3],np.transpose(observed_pts)) + np.tile(camera2robot[0:3,3:],(1,observed_pts.shape[0])))
# ax.scatter(t_observed_pts[:,0],t_observed_pts[:,1],t_observed_pts[:,2], c='red')
# new_observed_pts = observed_pts.copy()
# new_observed_pts[:,2] = new_observed_pts[:,2] * camera_depth_offset[0]
# R, t = get_rigid_transform(np.asarray(measured_pts), np.asarray(new_observed_pts))
# t.shape = (3,1)
# camera_pose = np.concatenate((np.concatenate((R, t), axis=1),np.array([[0, 0, 0, 1]])), axis=0)
# camera2robot = np.linalg.inv(camera_pose)
# t_new_observed_pts = np.transpose(np.dot(camera2robot[0:3,0:3],np.transpose(new_observed_pts)) + np.tile(camera2robot[0:3,3:],(1,new_observed_pts.shape[0])))
# ax.scatter(t_new_observed_pts[:,0],t_new_observed_pts[:,1],t_new_observed_pts[:,2], c='green')
# plt.show()